Spectroscopy of N=50 isotones with the valence-space density matrix renormalization group

被引:4
|
作者
Tichai, A. [1 ,2 ,3 ]
Kapas, K. [4 ,5 ]
Miyagi, T. [1 ,2 ,4 ,5 ,6 ]
Werner, M. A. [5 ,7 ]
Legeza, Oe. [8 ]
Schwenk, A. [1 ,2 ,3 ]
Zarand, G. [7 ]
机构
[1] Tech Univ Darmstadt, Dept Phys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany
[3] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
[4] Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[5] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[6] Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan
[7] Budapest Univ Technol & Econ, HUN REN BME Quantum Dynam & Correlat Res Grp, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[8] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2a, D-85748 Garching, Germany
关键词
BODY PERTURBATION-THEORY; SHELL-MODEL; NUCLEI;
D O I
10.1016/j.physletb.2024.138841
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recently proposed combination of the valence-space in-medium similarity renormalization group (VS-IMSRG) with the density matrix renormalization group (DMRG) offers a scalable and flexible many-body approach for strongly correlated open-shell nuclei. We use the VS-DMRG to investigate the low-lying spectroscopy of N = 50 isotones, which are characteristic for their transition between single-particle and collective excitations. We also study electromagnetic transitions and show the advantage of the VS-DMRG to capture the underlying physics more efficiently, with significantly improved convergence compared to state-of-the-art shell-model truncations. Combined with an analysis of quantum information measures, this further establishes the VS-DMRG as a valuable method for ab initio calculations of nuclei.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Nuclear Spectroscopy of N=50 Isotones With 29 ≤ Z ≤ 36
    Maurya, K.
    Mehrotra, I.
    FRONTIERS IN GAMMA-RAY SPECTROSCOPY 2012 - FIG12, 2014, 1609 : 92 - 94
  • [22] Density matrix renormalization group, 30 years on
    Verstraete, Frank
    Nishino, Tomotoshi
    Schollwoeck, Ulrich
    Banuls, Mari Carmen
    Chan, Garnet K.
    Stoudenmire, Miles E.
    NATURE REVIEWS PHYSICS, 2023, 5 (05) : 273 - 276
  • [23] Frequency Domain Density Matrix Renormalization Group
    Jiang, Tong
    Ren, Jiajun
    Shuai, Zhigang
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (12): : 2610 - 2628
  • [24] The density matrix renormalization group and nuclear structure
    Pittel, S.
    Dukelsky, J.
    Sandulescu, N.
    FRONTIERS IN NUCLEAR STRUCTURE ASTROPHYSICS, AND REACTIONS: FINUSTAR, 2006, 831 : 225 - +
  • [25] Density-matrix renormalization group algorithms
    Jeckelmann, Eric
    COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 : 597 - 619
  • [26] Polarizable Embedding Density Matrix Renormalization Group
    Hedegard, Erik D.
    Reiher, Markus
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (09) : 4242 - 4253
  • [27] The density matrix renormalization group and nuclear structure
    Pittel, S.
    Thakur, B.
    Sandulescu, N.
    REVISTA MEXICANA DE FISICA, 2007, 53 (06) : 83 - 85
  • [28] Augmenting Density Matrix Renormalization Group with Disentanglers
    钱湘坚
    秦明普
    Chinese Physics Letters, 2023, 40 (05) : 108 - 115
  • [29] Analytic formulations of the density matrix renormalization group
    MartinDelgado, MA
    Sierra, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (17): : 3145 - 3174
  • [30] The Density Matrix Renormalization Group in Quantum Chemistry
    Chan, Garnet Kin-Lic
    Sharma, Sandeep
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 : 465 - 481