Density matrix renormalization group, 30 years on

被引:12
|
作者
Verstraete, Frank [1 ,2 ]
Nishino, Tomotoshi [3 ]
Schollwoeck, Ulrich [4 ,5 ]
Banuls, Mari Carmen [5 ,6 ]
Chan, Garnet K. [7 ]
Stoudenmire, Miles E. [8 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge, England
[2] Univ Ghent, Dept Phys, Ghent, Netherlands
[3] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Japan
[4] Ludwig Maximilians Univ Munchen, Munich, Germany
[5] Munich Ctr Quantum Sci & Technol MCQST, Munich, Germany
[6] Max Planck Inst Quantum Opt, Garching, Germany
[7] Caltech, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[8] Flatiron Inst, New York, NY 10010 USA
关键词
D O I
10.1038/s42254-023-00572-5
中图分类号
O59 [应用物理学];
学科分类号
摘要
The density matrix renormalization group (DMRG) algorithm pioneered by Steven White in 1992 is a variational optimization algorithm that physicists use to find the ground states of Hamiltonians of quantum many-body systems in low dimensions. But DMRG is more than a useful numerical method, it is a framework that brought together ideas from theoretical condensed matter physics and quantum information, enabling advances in other fields such as quantum chemistry and the study of dissipative systems. It also fostered the development and widespread use of tensor networks as mathematical representations of quantum many-body states, whose applications now go beyond quantum systems. Today, it is one of the most powerful and widely used methods for simulating strongly correlated quantum many-body systems. Six researchers discuss the early history of DMRG and the developments it spurred over the past three decades.
引用
收藏
页码:273 / 276
页数:4
相关论文
共 50 条
  • [1] Density matrix renormalization group, 30 years on
    Frank Verstraete
    Tomotoshi Nishino
    Ulrich Schollwöck
    Mari Carmen Bañuls
    Garnet K. Chan
    Miles E. Stoudenmire
    [J]. Nature Reviews Physics, 2023, 5 : 273 - 276
  • [2] The Density Matrix Renormalization Group
    Noack, RM
    White, SR
    [J]. DENSITY-MATRIX RENORMALIZATION: A NEW NUMERICAL METHOD IN PHYSICS, 1999, 528 : 27 - 66
  • [3] Density Matrix Renormalization Group for Dummies
    De Chiara, Gabriele
    Rizzi, Matteo
    Rossini, Davide
    Montangero, Simone
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2008, 5 (07) : 1277 - 1288
  • [4] The density-matrix renormalization group
    Schollwöck, U
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 259 - 315
  • [5] Transcorrelated density matrix renormalization group
    Baiardi, Alberto
    Reiher, Markus
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (16):
  • [6] Vibrational Density Matrix Renormalization Group
    Baiardi, Alberto
    Stein, Christopher J.
    Barone, Vincenzo
    Reiher, Markus
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (08) : 3764 - 3777
  • [7] Frequency Domain Density Matrix Renormalization Group
    Jiang, Tong
    Ren, Jiajun
    Shuai, Zhigang
    [J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (12): : 2610 - 2628
  • [8] Polarizable Embedding Density Matrix Renormalization Group
    Hedegard, Erik D.
    Reiher, Markus
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (09) : 4242 - 4253
  • [9] The density matrix renormalization group and nuclear structure
    Pittel, S.
    Dukelsky, J.
    Sandulescu, N.
    [J]. FRONTIERS IN NUCLEAR STRUCTURE ASTROPHYSICS, AND REACTIONS: FINUSTAR, 2006, 831 : 225 - +
  • [10] Density-matrix renormalization group algorithms
    Jeckelmann, Eric
    [J]. COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 : 597 - 619