Spectroscopy of N=50 isotones with the valence-space density matrix renormalization group

被引:4
|
作者
Tichai, A. [1 ,2 ,3 ]
Kapas, K. [4 ,5 ]
Miyagi, T. [1 ,2 ,4 ,5 ,6 ]
Werner, M. A. [5 ,7 ]
Legeza, Oe. [8 ]
Schwenk, A. [1 ,2 ,3 ]
Zarand, G. [7 ]
机构
[1] Tech Univ Darmstadt, Dept Phys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany
[3] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
[4] Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[5] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[6] Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan
[7] Budapest Univ Technol & Econ, HUN REN BME Quantum Dynam & Correlat Res Grp, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[8] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2a, D-85748 Garching, Germany
关键词
BODY PERTURBATION-THEORY; SHELL-MODEL; NUCLEI;
D O I
10.1016/j.physletb.2024.138841
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recently proposed combination of the valence-space in-medium similarity renormalization group (VS-IMSRG) with the density matrix renormalization group (DMRG) offers a scalable and flexible many-body approach for strongly correlated open-shell nuclei. We use the VS-DMRG to investigate the low-lying spectroscopy of N = 50 isotones, which are characteristic for their transition between single-particle and collective excitations. We also study electromagnetic transitions and show the advantage of the VS-DMRG to capture the underlying physics more efficiently, with significantly improved convergence compared to state-of-the-art shell-model truncations. Combined with an analysis of quantum information measures, this further establishes the VS-DMRG as a valuable method for ab initio calculations of nuclei.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Density matrix renormalization group, 30 years on
    Frank Verstraete
    Tomotoshi Nishino
    Ulrich Schollwöck
    Mari Carmen Bañuls
    Garnet K. Chan
    Miles E. Stoudenmire
    Nature Reviews Physics, 2023, 5 : 273 - 276
  • [32] Augmenting Density Matrix Renormalization Group with Disentanglers
    钱湘坚
    秦明普
    Chinese Physics Letters, 2023, (05) : 108 - 115
  • [33] Density Matrix Renormalization Group in the Heisenberg Picture
    Hartmann, Michael J.
    Prior, Javier
    Clark, Stephen R.
    Plenio, Martin B.
    PHYSICAL REVIEW LETTERS, 2009, 102 (05)
  • [34] The density matrix renormalization group and critical phenomena
    Bursill, RJ
    Gode, F
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (50) : 9765 - 9774
  • [35] A density matrix renormalization group study of polyacene
    Raghu, C
    Pati, YA
    Ramasesha, S
    SYNTHETIC METALS, 2003, 137 (1-3) : 1073 - 1074
  • [36] Augmenting Density Matrix Renormalization Group with Disentanglers
    Qian, Xiangjian
    Qin, Mingpu
    CHINESE PHYSICS LETTERS, 2023, 40 (05)
  • [37] Angular quantization and the density matrix renormalization group
    Gaite, J
    MODERN PHYSICS LETTERS A, 2001, 16 (17) : 1109 - 1116
  • [38] Dynamical density-matrix renormalization group
    Jeckelmann, Eric
    Benthien, Holger
    COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 : 621 - +
  • [39] Density-matrix renormalization group algorithm with multi-level active space
    Ma, Yingjin
    Wen, Jing
    Ma, Haibo
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (03):
  • [40] Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm
    Parker, Shane M.
    Shiozaki, Toru
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (21):