On q-Painlevé VI and the geometry of Segre surfaces

被引:0
|
作者
Roffelsen, Pieter [1 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Camperdown, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
connection problems; Painlev & eacute; equations; Riemann-Hilbert problems; Segre surfaces; truncated asymptotics; DIFFERENCE; EQUATION; TRANSCENDENTS;
D O I
10.1088/1361-6544/ad672b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the context of q-Painlev & eacute; VI with generic parameter values, the Riemann-Hilbert correspondence induces a one-to-one mapping between solutions of the nonlinear equation and points on an affine Segre surface. Upon fixing a generic point on the surface, we give formulae for the function values of the corresponding solution near the critical points, in the form of complete, convergent, asymptotic expansions. These lead in particular to the solution of the nonlinear connection problem for the general solution of q-Painlev & eacute; VI. We further show that, when the point on the Segre surface is moved to one of the sixteen lines on the surface, one of the asymptotic expansions near the critical points truncates, under suitable parameter assumptions. At intersection points of lines, this then yields doubly truncated asymptotics at one of the critical points or simultaneous truncation at both.
引用
收藏
页数:116
相关论文
共 50 条
  • [21] On an Integrable System of q-Difference Equations Satisfied by the Universal Characters: Its Lax Formalism and an Application to q-Painlevé Equations
    Teruhisa Tsuda
    Communications in Mathematical Physics, 2010, 293 : 347 - 359
  • [22] On a novel q-discrete analogue of the Painlevé VI equation
    Grammaticos, B.
    Ramani, A.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 257 (5-6): : 288 - 292
  • [23] Rational Surfaces Associated with Affine Root Systems¶and Geometry of the Painlevé Equations
    Hidetaka Sakai
    Communications in Mathematical Physics, 2001, 220 : 165 - 229
  • [24] An ergodic study of Painlevé VI
    Katsunori Iwasaki
    Takato Uehara
    Mathematische Annalen, 2007, 338 : 295 - 345
  • [25] An Area-Preserving Action of the Modular Group on Cubic Surfaces and the Painlevé VI Equation
    Katsunori Iwasaki
    Communications in Mathematical Physics, 2003, 242 : 185 - 219
  • [26] Numerical solution of the Painlev, VI equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 180 - 193
  • [27] Numerical solution of the Painlevé VI equation
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2013, 53 : 180 - 193
  • [28] Some dynamical aspects of Painlevé VI
    Faculty of Mathematics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
    Algebraic Analysis of Different. Equ.: From Microlocal Analysis to Exponential Asymptotics Festschrift in Honor of Takahiro K, (143-156):
  • [29] Classical conformal blocks and Painlevé VI
    Alexey Litvinov
    Sergei Lukyanov
    Nikita Nekrasov
    Alexander Zamolodchikov
    Journal of High Energy Physics, 2014
  • [30] Conformal field theory of Painlevé VI
    O. Gamayun
    N. Iorgov
    O. Lisovyy
    Journal of High Energy Physics, 2012