On q-Painlevé VI and the geometry of Segre surfaces

被引:0
|
作者
Roffelsen, Pieter [1 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Camperdown, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
connection problems; Painlev & eacute; equations; Riemann-Hilbert problems; Segre surfaces; truncated asymptotics; DIFFERENCE; EQUATION; TRANSCENDENTS;
D O I
10.1088/1361-6544/ad672b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the context of q-Painlev & eacute; VI with generic parameter values, the Riemann-Hilbert correspondence induces a one-to-one mapping between solutions of the nonlinear equation and points on an affine Segre surface. Upon fixing a generic point on the surface, we give formulae for the function values of the corresponding solution near the critical points, in the form of complete, convergent, asymptotic expansions. These lead in particular to the solution of the nonlinear connection problem for the general solution of q-Painlev & eacute; VI. We further show that, when the point on the Segre surface is moved to one of the sixteen lines on the surface, one of the asymptotic expansions near the critical points truncates, under suitable parameter assumptions. At intersection points of lines, this then yields doubly truncated asymptotics at one of the critical points or simultaneous truncation at both.
引用
收藏
页数:116
相关论文
共 50 条
  • [31] Deformations of the Zolotarev polynomials and Painlevé VI equations
    Vladimir Dragović
    Vasilisa Shramchenko
    Letters in Mathematical Physics, 2021, 111
  • [32] Schlesinger Transformations for Algebraic Painlevé VI Solutions
    Vidunas R.
    Kitaev A.V.
    Journal of Mathematical Sciences, 2021, 257 (4) : 495 - 517
  • [33] SEGRE VARIETIES AND OVOIDS OF Q+(7,Q)
    LUNARDON, G
    GEOMETRIAE DEDICATA, 1986, 20 (02) : 121 - 131
  • [34] Erratum: Conformal field theory of Painlevé VI
    O. Gamayun
    N. Iorgov
    O. Lisovyy
    Journal of High Energy Physics, 2012 (10)
  • [35] Blowups in BPS/CFT Correspondence, and Painlevé VI
    Nikita Nekrasov
    Annales Henri Poincaré, 2024, 25 : 1123 - 1213
  • [36] Painlevé VI, Rigid Tops and Reflection Equation
    A. M. Levin
    M. A. Olshanetsky
    A. V. Zotov
    Communications in Mathematical Physics, 2006, 268 : 67 - 103
  • [37] Painlevé VI, Painlevé III and the Hankel Determinant Associated with a Degenerate Jacobi Unitary Ensemble
    Min, Chao
    Chen, Yang
    arXiv, 2019,
  • [38] Recent Progress in the Geometry of Q-Acyclic Surfaces
    Palka, Karol
    AFFINE ALGEBRAIC GEOMETRY: THE RUSSELL FESTSCHRIFT, 2011, 54 : 271 - 287
  • [39] Picard and Chazy solutions to the Painlevé VI equation
    Marta Mazzocco
    Mathematische Annalen, 2001, 321 : 157 - 195
  • [40] Segre quartic surfaces and minitwistor spaces
    Honda, Nobuhiro
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 672 - 704