Genes for the Type-I Reaction Center and Galactolipid Synthesis are Required for Chlorophyll a Accumulation in a Purple Photosynthetic Bacterium

被引:1
|
作者
Tsukatani, Yusuke [1 ,2 ]
Azai, Chihiro [3 ,4 ]
Noji, Tomoyasu [5 ]
Kawai, Shigeru [2 ]
Sugimoto, Saori [6 ]
Shimamura, Shigeru [2 ]
Shimane, Yasuhiro [2 ]
Harada, Jiro [7 ]
Mizoguchi, Tadashi [4 ]
Tamiaki, Hitoshi [4 ]
Masuda, Shinji [6 ]
机构
[1] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Res Inst Marine Resources Utilizat, Biogeochem Res Ctr, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan
[2] JAMSTEC, Inst Extracutting edge Sci & Technol Avant garde R, Yokosuka, Kanagawa 2370061, Japan
[3] Chuo Univ, Fac Sci & Engn, Tokyo 1128551, Japan
[4] Ritsumeikan Univ, Grad Sch Life Sci, Kusatsu, Shiga 5258577, Japan
[5] Osaka City Univ, OCU Adv Res Inst Nat Sci & Technol OCARINA, Osaka 5588585, Japan
[6] Tokyo Inst Technol, Dept Life Sci & Technol, Yokohama, Kanagawa 2268501, Japan
[7] Kurume Univ, Dept Med Biochem, Sch Med, Kurume, Fukuoka 8300011, Japan
关键词
Bacteriochlorophyll; Chlorophyll; Galactolipid; Phototrophic proteobacteria; Type-I RC; REACTION-CENTER COMPLEX; GREEN SULFUR BACTERIA; BIOSYNTHESIS; PROTEIN; BACTERIOCHLOROPHYLL; TEPIDUM; REDUCTION;
D O I
10.1093/pcp/pcae076
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Anoxygenic photosynthesis is diversified into two classes: chlorophototrophy based on a bacterial type-I or type-II reaction center (RC). Whereas the type-I RC contains both bacteriochlorophyll and chlorophyll, type-II RC-based phototrophy relies only on bacteriochlorophyll. However, type-II phototrophic bacteria theoretically have the potential to produce chlorophyll a by the addition of an enzyme, chlorophyll synthase, because the direct precursor for the enzyme, chlorophyllide a, is produced as an intermediate of BChl a biosynthesis. In this study, we attempted to modify the type-II proteobacterial phototroph Rhodovulum sulfidophilum to produce chlorophyll a by introducing chlorophyll synthase, which catalyzes the esterification of a diterpenoid group to chlorophyllide a thereby producing chlorophyll a. However, the resulting strain did not accumulate chlorophyll a, perhaps due to the absence of endogenous chlorophyll a-binding proteins. We further heterologously incorporated genes encoding the type-I RC complex to provide a target for chlorophyll a. Heterologous expression of type-I RC subunits, chlorophyll synthase and galactolipid synthase successfully afforded detectable accumulation of chlorophyll a in Rdv. sulfidophilum. This suggests that the type-I RC can work to accumulate chlorophyll a and that galactolipids are likely necessary for the type-I RC assembly. The evolutionary acquisition of type-I RCs could be related to prior or concomitant acquisition of galactolipids and chlorophylls.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Mutational analyses of the photosynthetic reaction center-bound triheme cytochrome subunit and cytochrome c2 in the purple bacterium Rhodovulum sulfidophilum
    Masuda, S
    Tsukatani, Y
    Kimura, Y
    Nagashima, KVP
    Shimada, K
    Matsuura, K
    BIOCHEMISTRY, 2002, 41 (37) : 11211 - 11217
  • [42] Insights into the evolution of the antenna domains of Type-I and Type-II photosynthetic reaction centres through homology modelling
    Fyfe, PK
    Jones, MR
    Heathcote, P
    FEBS LETTERS, 2002, 530 (1-3) : 117 - 123
  • [43] Proton ENDOR spectroscopy of the anion radicals of the chlorophyll primary electron acceptors in type I photosynthetic reaction centres
    Rigby, SEJ
    Muhiuddin, IP
    Santabarbara, S
    Evans, MCW
    Heathcote, P
    CHEMICAL PHYSICS, 2003, 294 (03) : 319 - 328
  • [44] Menaquinone as the Secondary Electron Acceptor in the Type I Homodimeric Photosynthetic Reaction Center of Heliobacterium modesticaldum
    Kondo, Toni
    Itoh, Shigeru
    Matsuoka, Masahiro
    Azai, Chihiro
    Oh-oka, Hirozo
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (27): : 8480 - 8489
  • [45] Electron transfer to the reaction center-bound cytochrome subunit from membrane-bound electron donor of the purple photosynthetic bacterium Rhodovulum sulfidophilum
    Kimura, Y
    Masuda, S
    Nagashima, KVP
    Shimada, K
    Matsuura, K
    PLANT AND CELL PHYSIOLOGY, 2003, 44 : S74 - S74
  • [46] Excitation dynamics in the core antenna in the photosystem I reaction center of the chlorophyll d-containing photosynthetic prokaryote Acaryochloris marina
    Mi, DH
    Chen, M
    Lin, S
    Lince, M
    Larkum, AWD
    Blankenship, RE
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (06): : 1452 - 1457
  • [47] Thermodynamics of the Electron Acceptors in Heliobacterium modesticaldum: An Exemplar of an Early Homodimeric Type I Photosynthetic Reaction Center
    Ferlez, Bryan
    Cowgill, John
    Dong, Weibing
    Gisriel, Christopher
    Lin, Su
    Flores, Marco
    Walters, Karim
    Cetnar, Daniel
    Redding, Kevin E.
    Golbeck, John H.
    BIOCHEMISTRY, 2016, 55 (16) : 2358 - 2370
  • [48] Calcium Ions Are Required for the Enhanced Thermal Stability of the Light-harvesting-Reaction Center Core Complex from Thermophilic Purple Sulfur Bacterium Thermochromatium tepidum
    Kimura, Yukihiro
    Yu, Long-Jiang
    Hirano, Yu
    Suzuki, Hiroaki
    Wang, Zheng-Yu
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (01) : 93 - 99
  • [49] Structure of the H subunit of the photosynthetic reaction center from the thermophilic purple sulfur bacterium, Thermochromatium tepidum -: Implications for the specific binding of the lipid molecule to the membrane protein complex
    Fathir, I
    Mori, T
    Nogi, T
    Kobayashi, M
    Miki, K
    Nozawa, T
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (09): : 2652 - 2657
  • [50] Delta G(0) dependence of the electron transfer rate in the photosynthetic reaction center of plant photosystem I: Natural optimization of reaction between chlorophyll a (A(0)) and quinone
    Iwaki, M
    Kumazaki, S
    Yoshihara, K
    Erabi, T
    Itoh, S
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25): : 10802 - 10809