Genes for the Type-I Reaction Center and Galactolipid Synthesis are Required for Chlorophyll a Accumulation in a Purple Photosynthetic Bacterium

被引:1
|
作者
Tsukatani, Yusuke [1 ,2 ]
Azai, Chihiro [3 ,4 ]
Noji, Tomoyasu [5 ]
Kawai, Shigeru [2 ]
Sugimoto, Saori [6 ]
Shimamura, Shigeru [2 ]
Shimane, Yasuhiro [2 ]
Harada, Jiro [7 ]
Mizoguchi, Tadashi [4 ]
Tamiaki, Hitoshi [4 ]
Masuda, Shinji [6 ]
机构
[1] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Res Inst Marine Resources Utilizat, Biogeochem Res Ctr, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan
[2] JAMSTEC, Inst Extracutting edge Sci & Technol Avant garde R, Yokosuka, Kanagawa 2370061, Japan
[3] Chuo Univ, Fac Sci & Engn, Tokyo 1128551, Japan
[4] Ritsumeikan Univ, Grad Sch Life Sci, Kusatsu, Shiga 5258577, Japan
[5] Osaka City Univ, OCU Adv Res Inst Nat Sci & Technol OCARINA, Osaka 5588585, Japan
[6] Tokyo Inst Technol, Dept Life Sci & Technol, Yokohama, Kanagawa 2268501, Japan
[7] Kurume Univ, Dept Med Biochem, Sch Med, Kurume, Fukuoka 8300011, Japan
关键词
Bacteriochlorophyll; Chlorophyll; Galactolipid; Phototrophic proteobacteria; Type-I RC; REACTION-CENTER COMPLEX; GREEN SULFUR BACTERIA; BIOSYNTHESIS; PROTEIN; BACTERIOCHLOROPHYLL; TEPIDUM; REDUCTION;
D O I
10.1093/pcp/pcae076
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Anoxygenic photosynthesis is diversified into two classes: chlorophototrophy based on a bacterial type-I or type-II reaction center (RC). Whereas the type-I RC contains both bacteriochlorophyll and chlorophyll, type-II RC-based phototrophy relies only on bacteriochlorophyll. However, type-II phototrophic bacteria theoretically have the potential to produce chlorophyll a by the addition of an enzyme, chlorophyll synthase, because the direct precursor for the enzyme, chlorophyllide a, is produced as an intermediate of BChl a biosynthesis. In this study, we attempted to modify the type-II proteobacterial phototroph Rhodovulum sulfidophilum to produce chlorophyll a by introducing chlorophyll synthase, which catalyzes the esterification of a diterpenoid group to chlorophyllide a thereby producing chlorophyll a. However, the resulting strain did not accumulate chlorophyll a, perhaps due to the absence of endogenous chlorophyll a-binding proteins. We further heterologously incorporated genes encoding the type-I RC complex to provide a target for chlorophyll a. Heterologous expression of type-I RC subunits, chlorophyll synthase and galactolipid synthase successfully afforded detectable accumulation of chlorophyll a in Rdv. sulfidophilum. This suggests that the type-I RC can work to accumulate chlorophyll a and that galactolipids are likely necessary for the type-I RC assembly. The evolutionary acquisition of type-I RCs could be related to prior or concomitant acquisition of galactolipids and chlorophylls.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Excitonic Coupling on a Heliobacterial Symmetrical Type-I Reaction Center: Comparison with Photosystem I
    Kitoh-Nishioka, Hirotaka
    Shigeta, Yasuteru
    Itoh, Shigeru
    Kimura, Akihiro
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (02): : 389 - 403
  • [32] The natural defection of two hemes in the tetraheme cytochrome subunit bound to the photosynthetic reaction center complex in purple bacterium Rhodovulum sulfidophilum
    Yoshida, M
    Masuda, S
    Nagashima, KVP
    Shimada, K
    Matsuura, K
    PHOTOSYNTHESIS: MECHANISMS AND EFFECTS, VOLS I-V, 1998, : 897 - 900
  • [33] In vitro and in vivo electron transfer to the triheme cytochrome subunit bound to the photosynthetic reaction center complex in the purple bacterium Rhodovulum sulfidophilum
    Yoshida, MT
    Masuda, SN
    Nagashima, KVP
    Verméglio, A
    Shimada, K
    Matsuura, K
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1506 (01): : 23 - 30
  • [34] Rapid and specific detection of herbicides using a self-assembled photosynthetic reaction center from purple bacterium on an SPR chip
    Nakamura, C
    Hasegawa, M
    Nakamura, N
    Miyake, J
    BIOSENSORS & BIOELECTRONICS, 2003, 18 (5-6): : 599 - 603
  • [35] Detection of quinone function in the homodimeric type-I reaction center of Heliobacterium modesticuldum
    Kondo, T.
    Mino, H.
    Matsuoka, M.
    Azai, C.
    Ohoka, H.
    Itoh, S.
    PHOTOSYNTHESIS RESEARCH, 2007, 91 (2-3) : 143 - 143
  • [36] A new membrane-bound cytochrome c works as an electron donor to the photosynthetic reaction center complex in the purple bacterium, Rhodovulum sulfidophilum
    Kimura, Yasuaki
    Alric, Jean
    Vermeglio, Andre
    Masuda, Shinji
    Hagiwara, Yuuki
    Matsuura, Katsumi
    Shimada, Keizo
    Nagashima, Kenji V. P.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (09) : 6463 - 6472
  • [37] Effects of temperature and ΔG° on electron transfer from cytochrome c2 to the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides
    Venturoli, G
    Drepper, F
    Williams, JC
    Allen, JP
    Lin, X
    Mathis, P
    BIOPHYSICAL JOURNAL, 1998, 74 (06) : 3226 - 3240
  • [38] A membrane-bound electron donor cytochrome to the reaction center-bound cytochrome subunit of the purple photosynthetic bacterium, Rhodovulum sulfidophilum
    Kimura, Y
    Masuda, S
    Nagashima, KVP
    Shimada, K
    Matsuura, K
    PLANT AND CELL PHYSIOLOGY, 2004, 45 : S197 - S197
  • [39] GENES FOR COLLAGEN TYPE-I, TYPE-IV, AND TYPE-V ARE TRANSCRIBED IN HELA-CELLS BUT A POSTINITIATION BLOCK PREVENTS THE ACCUMULATION OF TYPE-I MESSENGER-RNA
    FURTH, JJ
    WROTH, TH
    ACKERMAN, S
    EXPERIMENTAL CELL RESEARCH, 1991, 192 (01) : 118 - 121
  • [40] Shortcut of the photosynthetic electron transfer in a mutant lacking the reaction center-bound cytochrome subunit by gene disruption in a purple bacterium, Rubrivivax gelatinosus
    Nagashima, KVP
    Shimada, K
    Matsuura, K
    FEBS LETTERS, 1996, 385 (03) : 209 - 213