Genes for the Type-I Reaction Center and Galactolipid Synthesis are Required for Chlorophyll a Accumulation in a Purple Photosynthetic Bacterium

被引:1
|
作者
Tsukatani, Yusuke [1 ,2 ]
Azai, Chihiro [3 ,4 ]
Noji, Tomoyasu [5 ]
Kawai, Shigeru [2 ]
Sugimoto, Saori [6 ]
Shimamura, Shigeru [2 ]
Shimane, Yasuhiro [2 ]
Harada, Jiro [7 ]
Mizoguchi, Tadashi [4 ]
Tamiaki, Hitoshi [4 ]
Masuda, Shinji [6 ]
机构
[1] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Res Inst Marine Resources Utilizat, Biogeochem Res Ctr, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan
[2] JAMSTEC, Inst Extracutting edge Sci & Technol Avant garde R, Yokosuka, Kanagawa 2370061, Japan
[3] Chuo Univ, Fac Sci & Engn, Tokyo 1128551, Japan
[4] Ritsumeikan Univ, Grad Sch Life Sci, Kusatsu, Shiga 5258577, Japan
[5] Osaka City Univ, OCU Adv Res Inst Nat Sci & Technol OCARINA, Osaka 5588585, Japan
[6] Tokyo Inst Technol, Dept Life Sci & Technol, Yokohama, Kanagawa 2268501, Japan
[7] Kurume Univ, Dept Med Biochem, Sch Med, Kurume, Fukuoka 8300011, Japan
关键词
Bacteriochlorophyll; Chlorophyll; Galactolipid; Phototrophic proteobacteria; Type-I RC; REACTION-CENTER COMPLEX; GREEN SULFUR BACTERIA; BIOSYNTHESIS; PROTEIN; BACTERIOCHLOROPHYLL; TEPIDUM; REDUCTION;
D O I
10.1093/pcp/pcae076
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Anoxygenic photosynthesis is diversified into two classes: chlorophototrophy based on a bacterial type-I or type-II reaction center (RC). Whereas the type-I RC contains both bacteriochlorophyll and chlorophyll, type-II RC-based phototrophy relies only on bacteriochlorophyll. However, type-II phototrophic bacteria theoretically have the potential to produce chlorophyll a by the addition of an enzyme, chlorophyll synthase, because the direct precursor for the enzyme, chlorophyllide a, is produced as an intermediate of BChl a biosynthesis. In this study, we attempted to modify the type-II proteobacterial phototroph Rhodovulum sulfidophilum to produce chlorophyll a by introducing chlorophyll synthase, which catalyzes the esterification of a diterpenoid group to chlorophyllide a thereby producing chlorophyll a. However, the resulting strain did not accumulate chlorophyll a, perhaps due to the absence of endogenous chlorophyll a-binding proteins. We further heterologously incorporated genes encoding the type-I RC complex to provide a target for chlorophyll a. Heterologous expression of type-I RC subunits, chlorophyll synthase and galactolipid synthase successfully afforded detectable accumulation of chlorophyll a in Rdv. sulfidophilum. This suggests that the type-I RC can work to accumulate chlorophyll a and that galactolipids are likely necessary for the type-I RC assembly. The evolutionary acquisition of type-I RCs could be related to prior or concomitant acquisition of galactolipids and chlorophylls.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Native Mass Spectrometry Characterizes the Photosynthetic Reaction Center Complex from the Purple Bacterium Rhodobacter sphaeroides
    Zhang, Hao
    Harrington, Lucas B.
    Lu, Yue
    Prado, Mindy
    Saer, Rafael
    Rempel, Don
    Blankenship, Robert E.
    Gross, Michael L.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2017, 28 (01) : 87 - 95
  • [22] Exchange and Complementation of Genes Coding for Photosynthetic Reaction Center Core Subunits among Purple Bacteria
    Kenji V. P. Nagashima
    André Verméglio
    Naoki Fusada
    Sakiko Nagashima
    Keizo Shimada
    Kazuhito Inoue
    Journal of Molecular Evolution, 2014, 79 : 52 - 62
  • [23] Exchange and Complementation of Genes Coding for Photosynthetic Reaction Center Core Subunits among Purple Bacteria
    Nagashima, Kenji V. P.
    Vermeglio, Andre
    Fusada, Naoki
    Nagashima, Sakiko
    Shimada, Keizo
    Inoue, Kazuhito
    JOURNAL OF MOLECULAR EVOLUTION, 2014, 79 (1-2) : 52 - 62
  • [24] Direct triazine herbicide detection using a self-assembled photosynthetic reaction center from purple bacterium
    Nakamura C.
    Hasegawa M.
    Shimada K.
    Shirai M.
    Miyake J.
    Biotechnology and Bioprocess Engineering, 2000, 5 (6) : 413 - 417
  • [25] DETRAPPING OF EXCITATION-ENERGY FROM THE REACTION-CENTER IN THE PHOTOSYNTHETIC PURPLE BACTERIUM RHODOSPIRILLUM-RUBRUM
    TIMPMANN, K
    ZHANG, FG
    FREIBERG, A
    SUNDSTROM, V
    BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1183 (01) : 185 - 193
  • [26] THE PHOTOSYNTHETIC REACTION CENTER FROM THE PURPLE BACTERIUM RHODOPSEUDOMONAS-VIRIDIS - NOBEL LECTURE, DECEMBER 8, 1988
    DEISENHOFER, J
    MICHEL, H
    CHEMICA SCRIPTA, 1989, 29 (03): : 205 - +
  • [27] Orientations of Iron-Sulfur Clusters FA and FB in the Homodimeric Type-I Photosynthetic Reaction Center of Heliobacterium modesticaldum
    Kondo, Toni
    Matsuoka, Masahiro
    Azai, Chihiro
    Itoh, Shigeru
    Oh-oka, Hirozo
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (18): : 4204 - 4212
  • [28] AMINO-ACID-SEQUENCE OF THE CYTOCHROME SUBUNIT OF THE PHOTOSYNTHETIC REACTION CENTER FROM THE PURPLE BACTERIUM RHODOPSEUDOMONAS-VIRIDIS
    WEYER, KA
    LOTTSPEICH, F
    GRUENBERG, H
    LANG, F
    OESTERHELT, D
    MICHEL, H
    EMBO JOURNAL, 1987, 6 (08): : 2197 - 2202
  • [29] KINETICS OF PHOTOOXIDATION OF SOLUBLE CYTOCHROMES, HIPIP, AND AZURIN BY THE PHOTOSYNTHETIC REACTION CENTER OF THE PURPLE PHOTOTROPHIC BACTERIUM RHODOPSEUDOMONAS-VIRIDIS
    MEYER, TE
    BARTSCH, RG
    CUSANOVICH, MA
    TOLLIN, G
    BIOCHEMISTRY, 1993, 32 (18) : 4719 - 4726
  • [30] A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers
    Gorka, Michael
    Charles, Philip
    Kalendra, Vidmantas
    Baldansuren, Amgalanbaatar
    Lakshmi, K., V
    Golbeck, John H.
    ISCIENCE, 2021, 24 (07)