Accurate Quantum Monte Carlo Forces for Machine-Learned Force Fields: Ethanol as a Benchmark

被引:1
|
作者
Slootman, E. [1 ]
Poltavsky, I. [2 ]
Shinde, R. [1 ]
Cocomello, J. [1 ]
Moroni, S. [3 ,4 ]
Tkatchenko, A. [2 ]
Filippi, C. [1 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[2] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[3] Ist Off Mat, CNR IOM DEMOCRITOS, I-34136 Trieste, Italy
[4] SISSA Scuola Int Super Avanzati, I-34136 Trieste, Italy
关键词
ENERGY;
D O I
10.1021/acs.jctc.4c00498
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum Monte Carlo (QMC) is a powerful method to calculate accurate energies and forces for molecular systems. In this work, we demonstrate how we can obtain accurate QMC forces for the fluxional ethanol molecule at room temperature by using either multideterminant Jastrow-Slater wave functions in variational Monte Carlo or just a single determinant in diffusion Monte Carlo. The excellent performance of our protocols is assessed against high-level coupled cluster calculations on a diverse set of representative configurations of the system. Finally, we train machine-learning force fields on the QMC forces and compare them to models trained on coupled cluster reference data, showing that a force field based on the diffusion Monte Carlo forces with a single determinant can faithfully reproduce coupled cluster power spectra in molecular dynamics simulations.
引用
下载
收藏
页码:6020 / 6027
页数:8
相关论文
共 50 条
  • [41] Fast and accurate quantum Monte Carlo for molecular crystals
    Zen, Andrea
    Brandenburg, Jan Gerit
    Klimes, Jiri
    Tkatchenko, Alexandre
    Alfe, Dario
    Michaelides, Angelos
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (08) : 1724 - 1729
  • [42] Strategies for fitting accurate machine-learned inter-atomic potentials for solid electrolytes
    Wang, Juefan
    Panchal, Abhishek A.
    Canepa, Pieremanuele
    MATERIALS FUTURES, 2023, 2 (01):
  • [43] ?-Machine Learned Potential Energy Surfaces and Force Fields
    Bowman, Joel M.
    Qu, Chen
    Conte, Riccardo
    Nandi, Apurba
    Houston, Paul L.
    Yu, Qi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (01) : 1 - 17
  • [44] A benchmark quantum Monte Carlo study of the ground state chromium dimer
    Hongo, Kenta
    Maezono, Ryo
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (05) : 1243 - 1255
  • [45] Computation of forces and stresses in solids: Towards accurate structural optimization with auxiliary-field quantum Monte Carlo
    Chen, Siyuan
    Zhang, Shiwei
    PHYSICAL REVIEW B, 2023, 107 (19)
  • [46] Methods for calculating forces within quantum Monte Carlo simulations
    Badinski, A.
    Haynes, P. D.
    Trail, J. R.
    Needs, R. J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (07)
  • [47] Computing atomic forces in quantum Monte Carlo calculations.
    Rappe, AM
    Mella, M
    Casalegno, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U298 - U299
  • [48] Electrochemical Degradation of Pt3Co Nanoparticles Investigated by Off-Lattice Kinetic Monte Carlo Simulations with Machine-Learned Potentials
    Jung, Jisu
    Ju, Suyeon
    Kim, Purun-hanul
    Hong, Deokgi
    Jeong, Wonseok
    Lee, Jinhee
    Han, Seungwu
    Kang, Sungwoo
    ACS CATALYSIS, 2023, 13 (24) : 16078 - 16087
  • [49] Polarizable force fields for Monte Carlo and molecular dynamics simulations
    Jordan, Kenneth D.
    DeFusco, Albert A., III
    Jiang, Hao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232 : 922 - 922
  • [50] Accurate spectroscopic properties by diffusion quantum Monte Carlo calculations
    Carvalho, Cassius M. C.
    Gargano, Ricardo
    Martins, Joao B. L.
    Politi, Jose Roberto S.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2020, 243