Accurate Quantum Monte Carlo Forces for Machine-Learned Force Fields: Ethanol as a Benchmark

被引:1
|
作者
Slootman, E. [1 ]
Poltavsky, I. [2 ]
Shinde, R. [1 ]
Cocomello, J. [1 ]
Moroni, S. [3 ,4 ]
Tkatchenko, A. [2 ]
Filippi, C. [1 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[2] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[3] Ist Off Mat, CNR IOM DEMOCRITOS, I-34136 Trieste, Italy
[4] SISSA Scuola Int Super Avanzati, I-34136 Trieste, Italy
关键词
ENERGY;
D O I
10.1021/acs.jctc.4c00498
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum Monte Carlo (QMC) is a powerful method to calculate accurate energies and forces for molecular systems. In this work, we demonstrate how we can obtain accurate QMC forces for the fluxional ethanol molecule at room temperature by using either multideterminant Jastrow-Slater wave functions in variational Monte Carlo or just a single determinant in diffusion Monte Carlo. The excellent performance of our protocols is assessed against high-level coupled cluster calculations on a diverse set of representative configurations of the system. Finally, we train machine-learning force fields on the QMC forces and compare them to models trained on coupled cluster reference data, showing that a force field based on the diffusion Monte Carlo forces with a single determinant can faithfully reproduce coupled cluster power spectra in molecular dynamics simulations.
引用
下载
收藏
页码:6020 / 6027
页数:8
相关论文
共 50 条
  • [31] Machine-learned atomic cluster expansion potentials for fast and quantum-accurate thermal simulations of wurtzite AlN
    Yang, Guang
    Liu, Yuan-Bin
    Yang, Lei
    Cao, Bing-Yang
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (08)
  • [32] Introducing QMC/MMpol: Quantum Monte Carlo in Polarizable Force Fields for Excited States
    Guareschi, Riccardo
    Zulfikri, Habiburrahman
    Daday, Csaba
    Floris, Franca Maria
    Amovilli, Claudio
    Mennucci, Benedetta
    Filippi, Claudia
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (04) : 1674 - 1683
  • [33] BIGDML-Towards accurate quantum machine learning force fields for materials
    Sauceda, Huziel E.
    Galvez-Gonzalez, Luis E.
    Chmiela, Stefan
    Oliver Paz-Borbon, Lauro
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [34] How fast do defects migrate in halide perovskites: insights from on-the-fly machine-learned force fields
    Pols, Mike
    Brouwers, Victor
    Calero, Sofia
    Tao, Shuxia
    CHEMICAL COMMUNICATIONS, 2023, 59 (31) : 4660 - 4663
  • [35] α-β phase transition of zirconium predicted by on-the-fly machine-learned force field
    Liu, Peitao
    Verdi, Carla
    Karsai, Ferenc
    Kresse, Georg
    PHYSICAL REVIEW MATERIALS, 2021, 5 (05)
  • [36] Algorithmic differentiation and the calculation of forces by quantum Monte Carlo
    Sorella, Sandro
    Capriotti, Luca
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (23):
  • [37] Correlated sampling in quantum Monte Carlo: A route to forces
    Filippi, C
    Umrigar, CJ
    PHYSICAL REVIEW B, 2000, 61 (24) : R16291 - R16294
  • [38] On a simple and accurate quantum correction for Monte Carlo simulation
    F. M. Bufler
    R. Hudé
    A. Erlebach
    Journal of Computational Electronics, 2006, 5 : 467 - 469
  • [39] A novel Monte Carlo algorithm for polarizable force fields
    Chen, B
    Martin, MG
    Siepmann, JI
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U705 - U705
  • [40] On a simple and accurate quantum correction for Monte Carlo simulation
    Bufler, F. M.
    Hude, R.
    Erlebach, A.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2006, 5 (04) : 467 - 469