Accurate Quantum Monte Carlo Forces for Machine-Learned Force Fields: Ethanol as a Benchmark

被引:1
|
作者
Slootman, E. [1 ]
Poltavsky, I. [2 ]
Shinde, R. [1 ]
Cocomello, J. [1 ]
Moroni, S. [3 ,4 ]
Tkatchenko, A. [2 ]
Filippi, C. [1 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[2] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[3] Ist Off Mat, CNR IOM DEMOCRITOS, I-34136 Trieste, Italy
[4] SISSA Scuola Int Super Avanzati, I-34136 Trieste, Italy
关键词
ENERGY;
D O I
10.1021/acs.jctc.4c00498
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum Monte Carlo (QMC) is a powerful method to calculate accurate energies and forces for molecular systems. In this work, we demonstrate how we can obtain accurate QMC forces for the fluxional ethanol molecule at room temperature by using either multideterminant Jastrow-Slater wave functions in variational Monte Carlo or just a single determinant in diffusion Monte Carlo. The excellent performance of our protocols is assessed against high-level coupled cluster calculations on a diverse set of representative configurations of the system. Finally, we train machine-learning force fields on the QMC forces and compare them to models trained on coupled cluster reference data, showing that a force field based on the diffusion Monte Carlo forces with a single determinant can faithfully reproduce coupled cluster power spectra in molecular dynamics simulations.
引用
收藏
页码:6020 / 6027
页数:8
相关论文
共 50 条
  • [21] Towards spectroscopic accuracy in molecular dynamics simulations with machine-learned CCSD(T) force fields
    Chmiela, Stefan
    Sauceda, Huziel
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [22] Segregation of Phosphorus and Silicon at the Grain Boundary in Bcc Iron via Machine-Learned Force Fields
    Cerny, Miroslav
    Sestak, Petr
    Kharton, Vladislav V.
    [J]. CRYSTALS, 2024, 14 (01)
  • [23] Hard antiphase domain boundaries in strontium titanate unravelled using machine-learned force fields
    Troester, A.
    Verdi, C.
    Dellago, C.
    Rychetsky, I
    Kresse, G.
    Schranz, W.
    [J]. PHYSICAL REVIEW MATERIALS, 2022, 6 (09)
  • [24] Benchmark quantum Monte Carlo calculations.
    Grossman, JC
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U298 - U298
  • [25] Computing forces with quantum Monte Carlo
    Assaraf, R
    Caffarel, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (10): : 4028 - 4034
  • [26] Machine Learning Diffusion Monte Carlo Forces
    Huang, Cancan
    Rubenstein, Brenda M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (01): : 339 - 355
  • [27] BIGDML—Towards accurate quantum machine learning force fields for materials
    Huziel E. Sauceda
    Luis E. Gálvez-González
    Stefan Chmiela
    Lauro Oliver Paz-Borbón
    Klaus-Robert Müller
    Alexandre Tkatchenko
    [J]. Nature Communications, 13
  • [28] CLIFF: A component-based, machine-learned, intermolecular force field
    Schriber, Jeffrey B.
    Nascimento, Daniel R.
    Koutsoukas, Alexios
    Spronk, Steven A.
    Cheney, Daniel L.
    Sherrill, C. David
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (18):
  • [29] Computing accurate forces in quantum Monte Carlo using Pulay's corrections and energy minimization
    Dipto. di Chim. Fis. Elettrochimica, Universita degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
    不详
    不详
    [J]. J Chem Phys, 16 (7193-7201):
  • [30] Computing accurate forces in quantum Monte Carlo using Pulay's corrections and energy minimization
    Casalegno, M
    Mella, M
    Rappe, AM
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (16): : 7193 - 7201