Accurate Quantum Monte Carlo Forces for Machine-Learned Force Fields: Ethanol as a Benchmark

被引:1
|
作者
Slootman, E. [1 ]
Poltavsky, I. [2 ]
Shinde, R. [1 ]
Cocomello, J. [1 ]
Moroni, S. [3 ,4 ]
Tkatchenko, A. [2 ]
Filippi, C. [1 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[2] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[3] Ist Off Mat, CNR IOM DEMOCRITOS, I-34136 Trieste, Italy
[4] SISSA Scuola Int Super Avanzati, I-34136 Trieste, Italy
关键词
ENERGY;
D O I
10.1021/acs.jctc.4c00498
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum Monte Carlo (QMC) is a powerful method to calculate accurate energies and forces for molecular systems. In this work, we demonstrate how we can obtain accurate QMC forces for the fluxional ethanol molecule at room temperature by using either multideterminant Jastrow-Slater wave functions in variational Monte Carlo or just a single determinant in diffusion Monte Carlo. The excellent performance of our protocols is assessed against high-level coupled cluster calculations on a diverse set of representative configurations of the system. Finally, we train machine-learning force fields on the QMC forces and compare them to models trained on coupled cluster reference data, showing that a force field based on the diffusion Monte Carlo forces with a single determinant can faithfully reproduce coupled cluster power spectra in molecular dynamics simulations.
引用
收藏
页码:6020 / 6027
页数:8
相关论文
共 50 条
  • [1] Multidomain simulations of aluminum nitride with machine-learned force fields
    Behrendt, Drew
    Nascimento, Von Braun
    Rappe, Andrew M.
    [J]. PHYSICAL REVIEW B, 2024, 110 (03)
  • [2] Practical Schemes for Accurate Forces in Quantum Monte Carlo
    Moroni, S.
    Saccani, S.
    Filippi, C.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (11) : 4823 - 4829
  • [3] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [4] Exploring Configurations of Nanocrystal Ligands Using Machine-Learned Force Fields
    Sowa, Jakub K.
    Roberts, Sean T.
    Rossky, Peter J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (32): : 7215 - 7222
  • [5] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel E.
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [6] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel E.
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [7] Towards exact molecular dynamics simulations with machine-learned force fields
    Stefan Chmiela
    Huziel E. Sauceda
    Klaus-Robert Müller
    Alexandre Tkatchenko
    [J]. Nature Communications, 9
  • [8] Accurate nuclear quantum statistics on machine-learned classical effective potentials
    Zaporozhets, Iryna
    Musil, Felix
    Kapil, Venkat
    Clementi, Cecilia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (13):
  • [9] Evaluating the transferability of machine-learned force fields for material property modeling
    Mohanty, Shaswat
    Yoo, SangHyuk
    Kang, Keonwook
    Cai, Wei
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2023, 288
  • [10] Piezo- and Pyroelectricity in Zirconia: A Study with Machine-Learned Force Fields
    Ganser, Richard
    Bongarz, Simon
    von Mach, Alexander
    Antunes, Luis Azevedo
    Kersch, Alfred
    [J]. PHYSICAL REVIEW APPLIED, 2022, 18 (05):