Nonlocal symmetries of two 2-component equations of Camassa-Holm type

被引:0
|
作者
Li, Ziqi [1 ]
Tian, Kai [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian operators; finite symmetry transformations; B & auml; cklund transformations; SHALLOW-WATER EQUATION; GEODESIC-FLOW; INTEGRABILITY;
D O I
10.1134/S0040577924090046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-component Camassa-Holm equation, as well as a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-component generalization of the modified Camassa-Holm equation, nonlocal infinitesimal symmetries quadratically dependent on eigenfunctions of linear spectral problems are constructed from functional gradients of spectral parameters. With appropriate pseudopotentials, these nonlocal infinitesimal symmetries are prolonged to enlarged systems, and then explicitly integrated to generate symmetry transformations in finite form for the enlarged systems. As implementations of these finite symmetry transformations, some kinds of nontrivial solutions and B & auml;cklund transformations are derived for both equations.
引用
收藏
页码:1471 / 1485
页数:15
相关论文
共 50 条
  • [21] On a two-component π-Camassa-Holm system
    Kohlmann, Martin
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (04) : 832 - 838
  • [22] On a two-component Camassa-Holm equation
    Zhang, Zixin
    Liu, Q. P.
    APPLIED MATHEMATICS LETTERS, 2025, 165
  • [23] Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa-Holm and Hunter-Saxton Systems
    Yan Lu
    Song Jun-Feng
    Qu Chang-Zheng
    CHINESE PHYSICS LETTERS, 2011, 28 (05)
  • [24] PERSISTENCE PROPERTIES AND INFINITE PROPAGATION FOR THE MODIFIED 2-COMPONENT CAMASSA-HOLM EQUATION
    Wu, Xinglong
    Guo, Boling
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (07) : 3211 - 3223
  • [25] The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations
    Escher, J.
    Kohlmann, M.
    Lenells, J.
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) : 436 - 452
  • [26] Equations of the Camassa-Holm hierarchy
    R. I. Ivanov
    Theoretical and Mathematical Physics, 2009, 160 : 952 - 959
  • [27] On the local and nonlocal Camassa-Holm hierarchies
    Casati, P
    Lorenzoni, P
    Ortenzi, G
    Pedroni, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (04)
  • [28] Rotation number and eigenvalues of two-component modified Camassa-Holm equations
    Jiang, Ke
    Meng, Gang
    Zhang, Zhi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 78
  • [29] Stability of blow-up solution for the two component Camassa-Holm equations
    Li, Xintao
    Huang, Shoujun
    Yan, Weiping
    ASYMPTOTIC ANALYSIS, 2020, 120 (3-4) : 319 - 336
  • [30] On the Nonlocal Symmetries of the μ-Camassa—Holm Equation
    Ognyan Christov
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 411 - 427