Rotation number and eigenvalues of two-component modified Camassa-Holm equations

被引:0
|
作者
Jiang, Ke [1 ]
Meng, Gang [2 ]
Zhang, Zhi [3 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Rotation number; Periodic/anti-periodic eigenvalues; Two-component Camassa-Holm equation; Continuous dependence; Estimates; SHALLOW-WATER EQUATION; LINEAR-SYSTEMS; WEAK TOPOLOGY; CONTINUITY; DEPENDENCE; OPERATORS;
D O I
10.1016/j.nonrwa.2024.104091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the spectral problem (������1) (- 1 ) 2 ������������ 1 ) (������1 = 2 ������2 -21 ������������ 1 ������2 ������ 2 for the two -component modified Camassa-Holm equation, where ������, ������are two potentials. By introducing the rotation number ������(������) and studying its properties, we prove that for any integer ������, { } the periodic or anti -periodic eigenvalues are the endpoints of the interval ������ is an element of R : ������(������) = - ������ . 2 Moreover, we prove that as nonlinear functionals of potentials, such eigenvalues are continuous in potentials with respect to the weak topologies in the Lebesgue space ������1[0, ������]. Finally, we apply the trace formula to give some estimates of the periodic eigenvalues when the ������1 norms of potentials are given.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A note on a modified two-component Camassa-Holm system
    Jin, Liangbing
    Guo, Zhengguang
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) : 887 - 892
  • [2] On a two-component π-Camassa-Holm system
    Kohlmann, Martin
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (04) : 832 - 838
  • [3] Lipschitz metric for the modified two-component Camassa-Holm system
    Guan, Chunxia
    Yan, Kai
    Wei, Xuemei
    [J]. ANALYSIS AND APPLICATIONS, 2018, 16 (02) : 159 - 182
  • [4] Wave breaking for a modified two-component Camassa-Holm system
    Guo, Zhengguang
    Zhu, Mingxuan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) : 2759 - 2770
  • [5] Dissipative solutions for the modified two-component Camassa-Holm system
    Wang, Yujuan
    Song, Yongduan
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (03): : 339 - 360
  • [6] Wave Breaking for the Modified Two-Component Camassa-Holm System
    Lv, Wujun
    Zhu, Weiyi
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] Singular solutions of a modified two-component Camassa-Holm equation
    Holm, Darryl D.
    Naraigh, Lennon O.
    Tronci, Cesare
    [J]. PHYSICAL REVIEW E, 2009, 79 (01)
  • [8] The global Gevrey regularity of the rotation two-component Camassa-Holm system
    Guo, Yingying
    Yin, Zhaoyang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
  • [9] On solutions of the two-component Camassa-Holm system
    Wu, Chao-Zhong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (08)
  • [10] Two-component generalizations of the Camassa-Holm equation
    Kuz'min, P. A.
    [J]. MATHEMATICAL NOTES, 2007, 81 (1-2) : 130 - 134