Nonlocal symmetries of two 2-component equations of Camassa-Holm type

被引:0
|
作者
Li, Ziqi [1 ]
Tian, Kai [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian operators; finite symmetry transformations; B & auml; cklund transformations; SHALLOW-WATER EQUATION; GEODESIC-FLOW; INTEGRABILITY;
D O I
10.1134/S0040577924090046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-component Camassa-Holm equation, as well as a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-component generalization of the modified Camassa-Holm equation, nonlocal infinitesimal symmetries quadratically dependent on eigenfunctions of linear spectral problems are constructed from functional gradients of spectral parameters. With appropriate pseudopotentials, these nonlocal infinitesimal symmetries are prolonged to enlarged systems, and then explicitly integrated to generate symmetry transformations in finite form for the enlarged systems. As implementations of these finite symmetry transformations, some kinds of nontrivial solutions and B & auml;cklund transformations are derived for both equations.
引用
收藏
页码:1471 / 1485
页数:15
相关论文
共 50 条
  • [41] Equations of Camassa-Holm type and the geometry of loop groups
    Gorka, Przemyslaw
    Pons, Daniel J.
    Reyes, Enrique G.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 87 : 190 - 197
  • [42] INFINITE PROPAGATION SPEED FOR A TWO COMPONENT CAMASSA-HOLM EQUATION
    Henry, David
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (03): : 597 - 606
  • [43] On the Cauchy problem for the two-component Camassa-Holm system
    Gui, Guilong
    Liu, Yue
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) : 45 - 66
  • [44] On Invariant-Preserving Finite Difference Schemes for the Camassa-Holm Equation and the Two-Component Camassa-Holm System
    Liu, Hailiang
    Pendleton, Terrance
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (04) : 1015 - 1041
  • [45] On a Camassa-Holm type equation with two dependent variables
    Falqui, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (02): : 327 - 342
  • [46] Global existence and blow-up phenomena for a periodic 2-component Camassa-Holm equation
    Hu, Qiaoyi
    Yin, Zhaoyang
    MONATSHEFTE FUR MATHEMATIK, 2012, 165 (02): : 217 - 235
  • [47] Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation
    Escher, Joachim
    Lechtenfeld, Olaf
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 19 (03) : 493 - 513
  • [48] THE TWO-COMPONENT μ-CAMASSA-HOLM SYSTEM WITH PEAKED SOLUTIONS
    Li, Yingying
    Fu, Ying
    Qu, Changzheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (10) : 5929 - 5954
  • [49] Higher Dimensional Camassa-Holm Equations
    Lou, S. Y.
    Jia, Man
    Hao, Xia-Zhi
    CHINESE PHYSICS LETTERS, 2023, 40 (02)
  • [50] A note on a modified two-component Camassa-Holm system
    Jin, Liangbing
    Guo, Zhengguang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) : 887 - 892