Alternatives to classical option pricing

被引:0
|
作者
Lindquist, W. Brent [1 ]
Rachev, Svetlozar T. [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79407 USA
关键词
Option pricing; Financial markets without riskless asset; Shadow riskless rate; Perpetual derivative; Deflated cumulative return process; MEAN-VARIANCE; EQUILIBRIUM;
D O I
10.1007/s10479-024-06213-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document}. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don't have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [1] The Classical and Stochastic Approach to Option Pricing
    Benada, Ludek
    Cupal, Martin
    EUROPEAN FINANCIAL SYSTEMS 2014, 2014, : 49 - 55
  • [2] A FIRST-ORDER BSPDE FOR SWING OPTION PRICING: CLASSICAL SOLUTIONS
    Bender, Christian
    Dokuchaev, Nikolai
    MATHEMATICAL FINANCE, 2017, 27 (03) : 902 - 925
  • [3] CLASSICAL AND QUANTUM SYMMETRIES IN OPTION PRICING; A THEORETICAL APPROACH TO RISK AND RANDOMNESS IN FINANCE
    Barad, Gefry
    METALURGIA INTERNATIONAL, 2012, 17 (01): : 152 - 157
  • [4] OPTION PRICING AND THE ARBITRAGE PRICING THEORY
    CHANG, JSK
    SHANKER, L
    JOURNAL OF FINANCIAL RESEARCH, 1987, 10 (01) : 1 - 16
  • [5] OPTION PRICING - REVIEW
    SMITH, CW
    JOURNAL OF FINANCIAL ECONOMICS, 1976, 3 (1-2) : 3 - 51
  • [6] Approximate option pricing
    Chalasani, P
    Jha, S
    Saias, I
    37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 244 - 253
  • [7] Nonlinear Option Pricing
    Wang, Tai-Ho
    QUANTITATIVE FINANCE, 2015, 15 (01) : 19 - 21
  • [8] Robust option pricing
    Bandi, Chaithanya
    Bertsimas, Dimitris
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 239 (03) : 842 - 853
  • [9] Strategic option pricing
    Bieta, Volker
    Broll, Udo
    Siebe, Wilfried
    ECONOMICS AND BUSINESS REVIEW, 2020, 6 (03) : 118 - 129
  • [10] Option pricing: An overview
    Karandikar, RL
    CURRENT SCIENCE, 2001, 80 (09): : 1176 - 1182