Action principles for dissipative, non-holonomic Newtonian mechanics

被引:0
|
作者
Acharya, Amit [1 ,2 ]
Sengupta, Ambar N. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Ctr Nonlinear Anal, Pittsburgh, PA 15213 USA
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
action principle; particle mechanics; dissipation; anholonomic constraints; VARIATIONAL-PRINCIPLES; GAUSS PRINCIPLE;
D O I
10.1098/rspa.2024.0113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A methodology for deriving dual variational principles for the classical Newtonian mechanics of mass points in the presence of applied forces, interaction forces and constraints, all with a general dependence on particle velocities and positions, is presented. Methods for incorporating constraints are critically assessed. General theory, as well as explicitly worked out variational principles for a dissipative system (due to Lorenz) and a system with anholonomic constraints (due to Pars) are demonstrated. Conditions under which a (family of) dual Hamiltonian flow(s), as well as a constant(s) of motion, may be associated with a conservative or dissipative, and possibly constrained, primal system naturally emerge in this work.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [31] Non-holonomic mechanics: A geometrical treatment of general coupled rolling motion
    Janova, J.
    Musilova, J.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2009, 44 (01) : 98 - 105
  • [32] On the model of non-holonomic billiard
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2011, 16 : 653 - 662
  • [33] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    RAMIREZ, R
    HADRONIC JOURNAL, 1983, 6 (06): : 1693 - 1704
  • [34] On Generalized Non-holonomic Systems
    P. Balseiro
    J. E. Solomin
    Letters in Mathematical Physics, 2008, 84 : 15 - 30
  • [35] Geometry of non-holonomic diffusion
    Hochgerner, Simon
    Ratiu, Tudor S.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (02) : 273 - 319
  • [36] Non-holonomic control I
    Brion, E
    Akulin, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    QUANTUM INFORMATICS 2004, 2004, 5833 : 62 - 69
  • [38] On non-holonomic systems equilibria
    Kozlov, V.V.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 1994, (03): : 74 - 79
  • [39] ON GEOMETRY OF NON-HOLONOMIC CONGRUENCE
    LISNYAK, VS
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1970, (02): : 124 - &
  • [40] NON-HOLONOMIC OTSUKI SPACES
    MOOR, A
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 33 (3-4): : 369 - 378