Covering the edges of a graph with triangles

被引:0
|
作者
Bujtas, Csilla [1 ,2 ,3 ]
Davoodi, Akbar [4 ]
Ding, Laihao [5 ,6 ]
Gyori, Ervin [7 ,9 ]
Tuza, Zsolt [8 ,9 ]
Yang, Donglei [10 ]
机构
[1] Univ Ljubljana, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Pannonia, Veszprem, Hungary
[4] Czech Acad Sci, Inst Comp Sci, Vodarenskou vezi 2, Prague 18207, Czech Republic
[5] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
[6] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Peoples R China
[7] Cent European Univ, Budapest, Hungary
[8] Univ Pannonia, Dept Comp Sci & Syst Technol, Veszprem, Hungary
[9] HUN REN Alfred Reny Inst Math, Budapest, Hungary
[10] Shandong Univ, Sch Math, Jinan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Edge-disjoint triangles; Edge clique covering; Nordhaus-Gaddum inequality;
D O I
10.1016/j.disc.2024.114226
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a graph G, let rho(Delta)(G) denote the minimum size of a set of edges and triangles that cover all edges of G, and let alpha(1)(G) be the maximum size of an edge set that contains at most one edge from each triangle. Motivated by a question of Erdos, Gallai, and Tuza, we study the relationship between rho(Delta)(G) and alpha(1)(G) and establish a sharp upper bound on rho(Delta)(G). We also prove Nordhaus-Gaddum-type inequalities for the considered invariants. (c) 2024 The Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Lower Bound on the Number of Contractible Edges in a 4-Connected Graph with Edges Not Contained in Triangles
    Egawa, Yoshimi
    Kotani, Keiko
    Nakamura, Shunsuke
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 965 - 987
  • [22] THE NUMBER OF CONTRACTIBLE EDGES IN A 4-CONNECTED GRAPH HAVING A SMALL NUMBER OF EDGES NOT CONTAINED IN TRIANGLES
    Kotani, Keiko
    Nakamura, Shunsuke
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2015, 15 (02): : 153 - 166
  • [23] Covering families of triangles
    Cheong, Otfried
    Devillers, Olivier
    Glisse, Marc
    Park, Ji-won
    PERIODICA MATHEMATICA HUNGARICA, 2023, 87 (1) : 86 - 109
  • [24] Covering a triangle with triangles
    Conway, JH
    Soifer, A
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (01): : 78 - 78
  • [25] Covering families of triangles
    Otfried Cheong
    Olivier Devillers
    Marc Glisse
    Ji-won Park
    Periodica Mathematica Hungarica, 2023, 87 : 86 - 109
  • [26] Decomposing Graphs into Edges and Triangles
    Kral, Daniel
    Lidicky, Bernard
    Martins, Taisa L.
    Pehova, Yanitsa
    COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (03): : 465 - 472
  • [27] Many triangles with few edges
    Kirsch, Rachel
    Radcliffe, A. J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (02):
  • [28] Packing and Covering Directed Triangles
    McDonald, Jessica
    Puleo, Gregory J.
    Tennenhouse, Craig
    GRAPHS AND COMBINATORICS, 2020, 36 (04) : 1059 - 1063
  • [29] On the Multiple Covering Densities of Triangles
    Sriamorn, Kirati
    Wetayawanich, Akanat
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (03) : 717 - 727
  • [30] COVERING TRIANGLES OF CONVEX POLYGON
    BARRON, R
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (03): : 321 - &