Covering families of triangles

被引:0
|
作者
Otfried Cheong
Olivier Devillers
Marc Glisse
Ji-won Park
机构
[1] Universität Bayreuth,Institut für Informatik
[2] Université de Lorraine,undefined
[3] CNRS,undefined
[4] Inria,undefined
[5] LORIA,undefined
[6] Université Paris-Saclay,undefined
[7] CNRS,undefined
[8] Inria,undefined
[9] Laboratoire de Mathématiques d’Orsay,undefined
来源
关键词
Triangles; Smallest area; Universal cover; Convex cover; Crescent; Half-disk; Square;
D O I
暂无
中图分类号
学科分类号
摘要
A cover for a family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {F}}}$$\end{document} of sets in the plane is a set into which every set in F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {F}}}$$\end{document} can be isometrically moved. We are interested in the convex cover of smallest area for a given family of triangles. Park and Cheong conjectured that any family of triangles of bounded diameter has a smallest convex cover that is itself a triangle. The conjecture is equivalent to the claim that for every convex set X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {X}}}$$\end{document} there is a triangle Z whose area is not larger than the area of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {X}}}$$\end{document}, such that Z covers the family of triangles contained in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {X}}}$$\end{document}. We prove this claim for the case where a diameter of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {X}}}$$\end{document} lies on its boundary. We also give a complete characterization of the smallest convex cover for the family of triangles contained in a half-disk, and for the family of triangles contained in a square. In both cases, this cover is a triangle.
引用
收藏
页码:86 / 109
页数:23
相关论文
共 50 条
  • [1] Covering families of triangles
    Cheong, Otfried
    Devillers, Olivier
    Glisse, Marc
    Park, Ji-won
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2023, 87 (1) : 86 - 109
  • [2] Covering a triangle with triangles
    Conway, JH
    Soifer, A
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (01): : 78 - 78
  • [3] Packing and Covering Directed Triangles
    McDonald, Jessica
    Puleo, Gregory J.
    Tennenhouse, Craig
    [J]. GRAPHS AND COMBINATORICS, 2020, 36 (04) : 1059 - 1063
  • [4] On the Multiple Covering Densities of Triangles
    Sriamorn, Kirati
    Wetayawanich, Akanat
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (03) : 717 - 727
  • [5] COVERING TRIANGLES OF CONVEX POLYGON
    BARRON, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (03): : 321 - &
  • [6] Covering a Convex Polygon by Triangles
    András Bezdek
    [J]. Geometriae Dedicata, 2000, 80 : 73 - 79
  • [7] Packing and Covering Directed Triangles
    Jessica McDonald
    Gregory J. Puleo
    Craig Tennenhouse
    [J]. Graphs and Combinatorics, 2020, 36 : 1059 - 1063
  • [8] Covering a convex polygon by triangles
    Bezdek, A
    [J]. GEOMETRIAE DEDICATA, 2000, 80 (1-3) : 73 - 79
  • [9] On a covering problem for equilateral triangles
    Dumitrescu, Adrian
    Jiang, Minghui
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [10] Packing and covering triangles in graphs
    [J]. Discrete Math, 1-3 (251-254):