Covering families of triangles

被引:0
|
作者
Otfried Cheong
Olivier Devillers
Marc Glisse
Ji-won Park
机构
[1] Universität Bayreuth,Institut für Informatik
[2] Université de Lorraine,undefined
[3] CNRS,undefined
[4] Inria,undefined
[5] LORIA,undefined
[6] Université Paris-Saclay,undefined
[7] CNRS,undefined
[8] Inria,undefined
[9] Laboratoire de Mathématiques d’Orsay,undefined
来源
关键词
Triangles; Smallest area; Universal cover; Convex cover; Crescent; Half-disk; Square;
D O I
暂无
中图分类号
学科分类号
摘要
A cover for a family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {F}}}$$\end{document} of sets in the plane is a set into which every set in F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {F}}}$$\end{document} can be isometrically moved. We are interested in the convex cover of smallest area for a given family of triangles. Park and Cheong conjectured that any family of triangles of bounded diameter has a smallest convex cover that is itself a triangle. The conjecture is equivalent to the claim that for every convex set X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {X}}}$$\end{document} there is a triangle Z whose area is not larger than the area of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {X}}}$$\end{document}, such that Z covers the family of triangles contained in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {X}}}$$\end{document}. We prove this claim for the case where a diameter of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {X}}}$$\end{document} lies on its boundary. We also give a complete characterization of the smallest convex cover for the family of triangles contained in a half-disk, and for the family of triangles contained in a square. In both cases, this cover is a triangle.
引用
下载
收藏
页码:86 / 109
页数:23
相关论文
共 50 条
  • [41] A characterization of spaces of constant curvature by minimum covering radius of triangles
    Csikos, Balazs
    Horvath, Marton
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (03): : 608 - 617
  • [42] Short rainbow cycles for families of matchings and triangles
    Guo, He
    JOURNAL OF GRAPH THEORY, 2024,
  • [43] RECURSIVE TRIANGLES APPEARING EMBEDDED IN RECURSIVE FAMILIES
    Hendel, Russell Jay
    FIBONACCI QUARTERLY, 2020, 58 (05): : 135 - 143
  • [44] COVERING PERFECT HASH FAMILIES AND COVERING ARRAYS OF HIGHER INDEX
    Colbourn, Charles j.
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2024, 13 (03) : 293 - 305
  • [45] Correction: Packing and Covering Triangles in Bilaterally-Complete Tripartite Graphs
    Naivedya Amarnani
    Amaury De Burgos
    Wayne Broughton
    Graphs and Combinatorics, 2025, 41 (1)
  • [46] Packing and Covering Triangles in K 4-free Planar Graphs
    Haxell, Penny
    Kostochka, Alexandr
    Thomasse, Stephan
    GRAPHS AND COMBINATORICS, 2012, 28 (05) : 653 - 662
  • [47] Packing and Covering Triangles in K4-free Planar Graphs
    Penny Haxell
    Alexandr Kostochka
    Stéphan Thomassé
    Graphs and Combinatorics, 2012, 28 : 653 - 662
  • [48] Application of covering techniques to families of curves
    Flynn, E
    Redmond, J
    JOURNAL OF NUMBER THEORY, 2003, 101 (02) : 376 - 397
  • [49] PACKING AND COVERING OF CROSSING FAMILIES OF CUTS
    SCHRIJVER, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (02) : 104 - 128
  • [50] Heterogeneous Hash Families and Covering Arrays
    Colbourn, Charles J.
    Torres-Jimenez, Jose
    ERROR-CORRECTING CODES, FINITE GEOMETRIES AND CRYPTOGRAPHY, 2010, 523 : 3 - +