Covering the edges of a graph with triangles

被引:0
|
作者
Bujtas, Csilla [1 ,2 ,3 ]
Davoodi, Akbar [4 ]
Ding, Laihao [5 ,6 ]
Gyori, Ervin [7 ,9 ]
Tuza, Zsolt [8 ,9 ]
Yang, Donglei [10 ]
机构
[1] Univ Ljubljana, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Pannonia, Veszprem, Hungary
[4] Czech Acad Sci, Inst Comp Sci, Vodarenskou vezi 2, Prague 18207, Czech Republic
[5] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
[6] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Peoples R China
[7] Cent European Univ, Budapest, Hungary
[8] Univ Pannonia, Dept Comp Sci & Syst Technol, Veszprem, Hungary
[9] HUN REN Alfred Reny Inst Math, Budapest, Hungary
[10] Shandong Univ, Sch Math, Jinan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Edge-disjoint triangles; Edge clique covering; Nordhaus-Gaddum inequality;
D O I
10.1016/j.disc.2024.114226
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a graph G, let rho(Delta)(G) denote the minimum size of a set of edges and triangles that cover all edges of G, and let alpha(1)(G) be the maximum size of an edge set that contains at most one edge from each triangle. Motivated by a question of Erdos, Gallai, and Tuza, we study the relationship between rho(Delta)(G) and alpha(1)(G) and establish a sharp upper bound on rho(Delta)(G). We also prove Nordhaus-Gaddum-type inequalities for the considered invariants. (c) 2024 The Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [41] On a problem of Erdos and Rothschild on edges in triangles
    Fox, Jacob
    Loh, Po-Shen
    COMBINATORICA, 2012, 32 (06) : 619 - 628
  • [42] Covering symmetric supermodular functions with graph edges: A short proof of a theorem of Benczur and Frank
    Bernath, Attila
    INFORMATION PROCESSING LETTERS, 2017, 128 : 49 - 53
  • [43] TRIANGLES IN AN ORDINARY GRAPH
    NORDHAUS, EA
    STEWART, BM
    CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (01): : 33 - &
  • [44] Packing and Covering Triangles in Tripartite Graphs
    P. E. Haxell
    Y. Kohayakawa
    Graphs and Combinatorics, 1998, 14 : 1 - 10
  • [45] Parallel covering of isosceles triangles with squares
    Lu, M.
    Su, Z.
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) : 266 - 297
  • [46] Packing and covering directed triangles asymptotically
    Cooper, Jacob W.
    Grzesik, Andrzej
    Kabela, Adam
    Kral', Daniel
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [47] Parallel covering of isosceles triangles with squares
    M. Lu
    Z. Su
    Acta Mathematica Hungarica, 2018, 155 : 266 - 297
  • [48] Packing and Covering Triangles in Planar Graphs
    Cui, Qing
    Haxell, Penny
    Ma, Will
    GRAPHS AND COMBINATORICS, 2009, 25 (06) : 817 - 824
  • [49] Beyond Triangulation: Covering Polygons with Triangles
    Christ, Tobias
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 231 - +
  • [50] Packing and covering triangles in tripartite graphs
    Haxell, PE
    Kohayakawa, Y
    GRAPHS AND COMBINATORICS, 1998, 14 (01) : 1 - 10