Doubly Robust Estimation and Semiparametric Efficiency in Generalized Partially Linear Models with Missing Outcomes

被引:0
|
作者
Wang, Lu [1 ]
Ouyang, Zhongzhe [1 ]
Lin, Xihong [2 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Harvard Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
来源
STATS | 2024年 / 7卷 / 03期
关键词
asymptotics; augmented inverse probability weighting; kernel smoothing; missing data at random; profile-kernel estimating equation; semiparametric efficiency; NONPARAMETRIC REGRESSION; INFERENCE;
D O I
10.3390/stats7030056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a semiparametric generalized partially linear regression model that accommodates missing outcomes, with some covariates modeled parametrically and others nonparametrically. We propose a class of augmented inverse probability weighted (AIPW) kernel-profile estimating equations. The nonparametric component is estimated using AIPW kernel estimating equations, while parametric regression coefficients are estimated using AIPW profile estimating equations. We demonstrate the doubly robust nature of the AIPW estimators for both nonparametric and parametric components. Specifically, these estimators remain consistent if either the assumed model for the probability of missing data or that for the conditional mean of the outcome, given covariates and auxiliary variables, is correctly specified, though not necessarily both simultaneously. Additionally, the AIPW profile estimator for parametric regression coefficients is consistent and asymptotically normal under the semiparametric model defined by the generalized partially linear model on complete data, assuming that the missing data mechanism is missing at random. When both working models are correctly specified, this estimator achieves semiparametric efficiency, with its asymptotic variance reaching the efficiency bound. We validate our approach through simulations to assess the finite sample performance of the proposed estimators and apply the method to a study that investigates risk factors associated with myocardial ischemia.
引用
收藏
页码:924 / 943
页数:20
相关论文
共 50 条
  • [31] Doubly robust estimation in missing data and causal inference models
    Bang, H
    BIOMETRICS, 2005, 61 (04) : 962 - 972
  • [32] Robust estimation in partially linear regression models
    Jiang, Yunlu
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (11) : 2497 - 2508
  • [33] Doubly robust estimation of partially linear models for longitudinal data with dropouts and measurement error in covariates
    Lin, Huiming
    Qin, Guoyou
    Zhang, Jiajia
    Fung, Wing K.
    STATISTICS, 2018, 52 (01) : 84 - 98
  • [34] Estimation in partially linear models with missing responses at random
    Wang, Qihua
    Sun, Zhihua
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (07) : 1470 - 1493
  • [35] Model selection and model averaging for semiparametric partially linear models with missing data
    Zeng, Jie
    Cheng, Weihu
    Hu, Guozhi
    Rong, Yaohua
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (02) : 381 - 395
  • [36] Semiparametric Bayesian doubly robust causal estimation
    Luo, Yu
    Graham, Daniel J.
    McCoy, Emma J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 225 : 171 - 187
  • [37] Robust tests in generalized linear models with missing responses
    Bianco, Ana M.
    Boente, Graciela
    Rodrigues, Isabel M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 65 : 80 - 97
  • [38] ASYMPTOTICALLY EFFICIENT ESTIMATION IN SEMIPARAMETRIC GENERALIZED LINEAR-MODELS
    CHEN, H
    ANNALS OF STATISTICS, 1995, 23 (04): : 1102 - 1129
  • [39] Semiparametric estimation of a class of generalized linear models without smoothing
    Sancetta, Alessio
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 130 : 141 - 154
  • [40] Semiparametric efficiency for partially linear single-index regression models
    Chen, Tao
    Parker, Thomas
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 130 : 376 - 386