Doubly robust estimation in missing data and causal inference models
被引:1099
|
作者:
Bang, H
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Weill Med Coll, Dept Publ Hlth, Div Biostat & Epidemiol, New York, NY 10021 USACornell Univ, Weill Med Coll, Dept Publ Hlth, Div Biostat & Epidemiol, New York, NY 10021 USA
Bang, H
[1
]
机构:
[1] Cornell Univ, Weill Med Coll, Dept Publ Hlth, Div Biostat & Epidemiol, New York, NY 10021 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood-based or (nonaugmented) inverse probability-weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.
机构:
Cornell Univ, Weill Med Coll, Dept Publ Hlth, Div Biostat & Epidemiol, New York, NY 10021 USACornell Univ, Weill Med Coll, Dept Publ Hlth, Div Biostat & Epidemiol, New York, NY 10021 USA
Bang, Heejung
Robins, James M.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USACornell Univ, Weill Med Coll, Dept Publ Hlth, Div Biostat & Epidemiol, New York, NY 10021 USA
机构:
Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI USA
Xu, Tinghui
Zhao, Jiwei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI USA
Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53726 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI USA
机构:
Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R ChinaZhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
Ke, Da
Zhou, Xiaoxiao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alabama Birmingham, Dept Biostat, Birmingham, AL 35294 USAZhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
Zhou, Xiaoxiao
Yang, Qinglong
论文数: 0引用数: 0
h-index: 0
机构:
Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R ChinaZhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
Yang, Qinglong
Song, Xinyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Shatin NT, Hong Kong 999077, Peoples R ChinaZhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China