Improved double-robust estimation in missing data and causal inference models

被引:96
|
作者
Rotnitzky, Andrea [1 ]
Lei, Quanhong [2 ]
Sued, Mariela [3 ]
Robins, James M. [4 ]
机构
[1] Di Tella Univ, RA-14281 Buenos Aires, DF, Argentina
[2] Adheris Inc, Burlington, MA 01803 USA
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina
[4] Harvard Univ, Sch Publ Hlth, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Drop-out; Marginal structural model; Missing at random; LIKELIHOOD; EFFICIENCY;
D O I
10.1093/biomet/ass013
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-robust estimators for the parameters of regression models with incomplete cross-sectional or longitudinal data, and of marginal structural mean models for cross-sectional data with similar efficiency properties. Unlike the recent proposals, our estimators solve outcome regression estimating equations. In a simulation study, the new estimator shows improvements in variance relative to the standard double-robust estimator that are in agreement with those suggested by asymptotic theory.
引用
收藏
页码:439 / 456
页数:18
相关论文
共 50 条
  • [1] Doubly robust estimation in missing data and causal inference models
    Bang, H
    [J]. BIOMETRICS, 2005, 61 (04) : 962 - 972
  • [2] Doubly robust estimation in missing data and causal inference models (vol 61, pg 962, 2005)
    Bang, Heejung
    Robins, James M.
    [J]. BIOMETRICS, 2008, 64 (02) : 650 - 650
  • [3] Robust and efficient estimation for the treatment effect in causal inference and missing data problems
    Lin, Huazhen
    Zhou, Fanyin
    Wang, Qiuxia
    Zhou, Ling
    Qin, Jing
    [J]. JOURNAL OF ECONOMETRICS, 2018, 205 (02) : 363 - 380
  • [4] Implementing double-robust estimators of causal effects
    Emsley, Richard
    Lunt, Mark
    Pickles, Andrew
    Dunn, Graham
    [J]. STATA JOURNAL, 2008, 8 (03): : 334 - 353
  • [5] Doubly robust estimation and causal inference for recurrent event data
    Su, Chien-Lin
    Steele, Russell
    Shrier, Ian
    [J]. STATISTICS IN MEDICINE, 2020, 39 (17) : 2324 - 2338
  • [6] Causal Inference: A Missing Data Perspective
    Ding, Peng
    Li, Fan
    [J]. STATISTICAL SCIENCE, 2018, 33 (02) : 214 - 237
  • [7] Robust estimation and inference for general varying coefficient models with missing observations
    Bravo, Francesco
    [J]. TEST, 2020, 29 (04) : 966 - 988
  • [8] Robust estimation and inference for general varying coefficient models with missing observations
    Francesco Bravo
    [J]. TEST, 2020, 29 : 966 - 988
  • [9] Robust causal inference for point exposures with missing confounders
    Levis, Alexander W.
    Mukherjee, Rajarshi
    Wang, Rui
    Haneuse, Sebastien
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024,
  • [10] Bayesian nonparametric for causal inference and missing data
    Chen, Li-Pang
    [J]. BIOMETRICS, 2024, 80 (01)