Robust tests in generalized linear models with missing responses

被引:8
|
作者
Bianco, Ana M. [1 ,2 ]
Boente, Graciela [1 ,2 ]
Rodrigues, Isabel M. [3 ,4 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, RA-1053 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[3] Tech Univ Lisbon TULisbon, Dept Matemat, Inst Super Tecn, Lisbon, Portugal
[4] Tech Univ Lisbon TULisbon, CEMAT, Inst Super Tecn, Lisbon, Portugal
关键词
Fisher-consistency; Generalized linear models; Influence function; Missing data; Outliers; Robust estimation; Robust testing; LOGISTIC-REGRESSION; ASYMMETRIC ERRORS;
D O I
10.1016/j.csda.2012.05.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In many situations, data follow a generalized linear model in which the mean of the responses is modelled, through a link function, linearly on the covariates. Robust estimators for the regression parameter in order to build test statistics for this parameter, when missing data occur in the responses, are considered. The asymptotic behaviour of the robust estimators for the regression parameter is obtained, under the null hypothesis and under contiguous alternatives. This allows us to derive the asymptotic distribution of the robust Wald-type test statistics constructed from the proposed estimators. The influence function of the test statistics is also studied. A simulation study allows us to compare the behaviour of the classical and robust tests, under different contamination schemes. Applications to real data sets enable to investigate the sensitivity of the p-value to the missing scheme and to the presence of outliers. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 97
页数:18
相关论文
共 50 条