Hot Electrons Induced by Localized Surface Plasmon Resonance in Ag/g-C3N4 Schottky Junction for Photothermal Catalytic CO2 Reduction

被引:1
|
作者
Jiang, Peng [1 ]
Wang, Kun [1 ]
Liu, Wenrui [1 ]
Song, Yuhang [1 ]
Zheng, Runtian [2 ]
Chen, Lihua [1 ]
Su, Baolian [1 ,2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Univ Namur, Lab Inorgan Mat Chem, B-5000 Namur, Belgium
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Ag/g-C3N4; Schottky junction; photothermal catalytic CO2 reduction; hot electrons; plasmonic metal/polymer semiconductor; G-C3N4; CONVERSION;
D O I
10.3390/polym16162317
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Converting carbon dioxide (CO2) into high-value-added chemicals using solar energy is a promising approach to reducing carbon dioxide emissions; however, single photocatalysts suffer from quick the recombination of photogenerated electron-hole pairs and poor photoredox ability. Herein, silver (Ag) nanoparticles featuring with localized surface plasmon resonance (LSPR) are combined with g-C3N4 to form a Schottky junction for photothermal catalytic CO2 reduction. The Ag/g-C3N4 exhibits higher photocatalytic CO2 reduction activity under UV-vis light; the CH4 and CO evolution rates are 10.44 and 88.79 mu mol<middle dot>h(-1)<middle dot>g(-1), respectively. Enhanced photocatalytic CO2 reduction performances are attributed to efficient hot electron transfer in the Ag/g-C3N4 Schottky junction. LSPR-induced hot electrons from Ag nanoparticles improve the local reaction temperature and promote the separation and transfer of photogenerated electron-hole pairs. The charge carrier transfer route was investigated by in situ irradiated X-ray photoelectron spectroscopy (XPS). The three-dimensional finite-difference time-domain (3D-FDTD) method verified the strong electromagnetic field at the interface between Ag and g-C3N4. The photothermal catalytic CO2 reduction pathway of Ag/g-C3N4 was investigated using in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS). This study examines hot electron transfer in the Ag/g-C3N4 Schottky junction and provides a feasible way to design a plasmonic metal/polymer semiconductor Schottky junction for photothermal catalytic CO2 reduction.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Composite interfaces of g-C3N4 fragments loaded on a Cu substrate for CO2 reduction
    Gong, Qiang
    Xiong, Jianling
    Zhou, Tanyu
    Bao, Wenkai
    Zhang, Xiuyun
    Liu, Guiwu
    Qiao, Guanjun
    Xu, Ziwei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (13) : 10202 - 10213
  • [42] g-C3N4/dendritic fibrous nanosilica doped with potassium for photocatalytic CO2 reduction
    Rawool, Sushma A.
    Kar, Yusuf
    Polshettiwar, Vivek
    MATERIALS ADVANCES, 2022, 3 (23): : 8449 - 8459
  • [43] Enhanced performance of attapulgite-supported g-C3N4 for photocatalytic CO2 reduction
    Yang, Wenqin
    Zhou, Yu
    Zhao, Jiale
    She, Houde
    Zhang, Yang
    Peng, Jianhong
    Huang, Jingwei
    Wang, Lei
    Wang, Qizhao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 692
  • [44] Incorporation of Cesium Lead Halide Perovskites into g-C3N4 for Photocatalytic CO2 Reduction
    Cheng, Ruolin
    Jin, Handong
    Roeffaers, Maarten B. J.
    Hofkens, Johan
    Debroye, Elke
    ACS OMEGA, 2020, 5 (38): : 24495 - 24503
  • [45] Recent progress in modifications of g-C3N4 for photocatalytic hydrogen evolution and CO2 reduction
    Rana, Garima
    Dhiman, Pooja
    Kumar, Amit
    Dawi, Elmuez A.
    Sharma, Gaurav
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (01)
  • [46] Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction
    Ma, Liang
    Li, Zhou
    Jiang, Zhiqiang
    Wu, Xiaofeng
    Chang, Shixin
    Carabineiro, A. C.
    Lv, Kangle
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2024, 43 (11)
  • [47] Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4
    Cao, Shaowen
    Li, Yao
    Zhu, Bicheng
    Jaroniec, Mietek
    Yu, Jiaguo
    JOURNAL OF CATALYSIS, 2017, 349 : 208 - 217
  • [48] Prominent COF, g-C3N4, and Their Heterojunction Materials for Selective Photocatalytic CO2 Reduction
    Bika, Panagiota
    Papailias, Ilias
    Giannakopoulou, Tatiana
    Tampaxis, Christos
    Steriotis, Theodore A.
    Trapalis, Christos
    Dallas, Panagiotis
    CATALYSTS, 2023, 13 (10)
  • [49] Synergistic effect of Cu and Ru decoration on g-C3N4 for electrocatalytic CO2 reduction
    Hu, Chechia
    Liu, Miao-Ting
    Sakai, Arisu
    Yoshida, Masaaki
    Lin, Kun-Yi Andrew
    Huang, Chun-Chieh
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 115 : 329 - 338
  • [50] Photocatalytic Reduction of CO2 over Iron-Modified g-C3N4 Photocatalysts
    Edelmannova, Miroslava
    Reli, Martin
    Koci, Kamila
    Papailias, Ilias
    Todorova, Nadia
    Giannakopoulou, Tatiana
    Dallas, Panagiotis
    Devlin, Eamonn
    Ioannidis, Nikolaos
    Trapalis, Christos
    PHOTOCHEM, 2021, 1 (03): : 462 - 476