Effectively detecting anomalous diffusion via deep learning

被引:0
|
作者
Pacheco-Pozo, Adrian [1 ,2 ]
Krapf, Diego [1 ,2 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 10期
关键词
10;
D O I
10.1038/s43588-024-00705-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A deep learning algorithm is presented to classify single-particle tracking trajectories into theoretical models of anomalous diffusion and detect if the trajectory is related to a model not originally found within the training dataset.
引用
收藏
页码:731 / 732
页数:2
相关论文
共 50 条
  • [41] Bayesian deep learning for error estimation in the analysis of anomalous diffusion (vol 13, 6717, 2022)
    Seckler, Henrik
    Metzler, Ralf
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [42] Detecting Anomalous Trajectories via Recurrent Neural Networks
    Ma, Cong
    Miao, Zhenjiang
    Li, Min
    Song, Shaoyue
    Yang, Ming-Hsuan
    COMPUTER VISION - ACCV 2018, PT IV, 2019, 11364 : 370 - 382
  • [43] DronLomaly: Runtime Detection of Anomalous Drone Behaviors via Log Analysis and Deep Learning
    Shar, Lwin Khin
    Minn, Wei
    Ta, Nguyen Binh Duong
    Fan, Jiani
    Jiang, Lingxiao
    Kiat, Daniel Lim Wai
    2022 29TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, APSEC, 2022, : 119 - 128
  • [44] A DEEP LEARNING APPROACH TO DETECTING DIFFUSION-FLAIR MISMATCH USING DIFFUSIONWEIGHTED IMAGES AND APPARENT DIFFUSION COEFFICIENT MAPS
    Park, S.
    INTERNATIONAL JOURNAL OF STROKE, 2024, 19 (02) : 47 - 47
  • [45] Detecting Anomalous Regions from an Image based on Deep Captioning
    Hatae, Yusuke
    Yang, Qingpu
    Fadjrimiratno, Muhammad Fikko
    Li, Yuanyuan
    Matsukawa, Tetsu
    Suzuki, Einoshin
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 326 - 335
  • [46] Detecting Anomalous Transactions via an IoT Based Application: A Machine Learning Approach for Horse Racing Betting
    Min, Moohong
    Lee, Jemin Justin
    Park, Hyunbeom
    Lee, Kyungho
    SENSORS, 2021, 21 (06) : 1 - 17
  • [47] Detecting the edges of galaxies with deep learning
    Fernandez-Iglesias, Jesus
    Buitrago, Fernando
    Sahelices, Benjamin
    ASTRONOMY & ASTROPHYSICS, 2024, 683
  • [48] Detecting Intracranial Hemorrhage with Deep Learning
    Majumdar, Arjun
    Brattain, Laura
    Telfer, Brian
    Farris, Chad
    Scalera, Jonathan
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 583 - 587
  • [49] Detecting Distracted Driving with Deep Learning
    Okon, Ofonime Dominic
    Meng, Li
    INTERACTIVE COLLABORATIVE ROBOTICS (ICR 2017), 2017, 10459 : 170 - 179
  • [50] Deep Learning for Detecting Android Malwares
    Ilham, Soussi
    Abderrahim, Ghadi
    Anouar Abdelhakim, Boudhir
    4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,