Effectively detecting anomalous diffusion via deep learning

被引:0
|
作者
Pacheco-Pozo, Adrian [1 ,2 ]
Krapf, Diego [1 ,2 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 10期
关键词
10;
D O I
10.1038/s43588-024-00705-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A deep learning algorithm is presented to classify single-particle tracking trajectories into theoretical models of anomalous diffusion and detect if the trajectory is related to a model not originally found within the training dataset.
引用
收藏
页码:731 / 732
页数:2
相关论文
共 50 条
  • [31] Deep Learning Based Approach for Classifying Power Signals and Detecting Anomalous Behavior of Wireless Devices
    Albasir, Abdurhman
    Manzano, Ricardo
    Naik, Kshirasagar
    2019 IEEE WORLD CONGRESS ON SERVICES (IEEE SERVICES 2019), 2019, : 92 - 98
  • [32] Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis
    Jamali, Vida
    Hargus, Cory
    Ben-Moshe, Assaf
    Aghazadeh, Amirali
    Hyun Dong Ha
    Mandadapu, Kranthi K.
    Alivisatos, A. Paul
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (10)
  • [33] Machine learning analysis of anomalous diffusion
    Cai, Wenjie
    Hu, Yi
    Qu, Xiang
    Zhao, Hui
    Wang, Gongyi
    Li, Jing
    Huang, Zihan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2025, 140 (03):
  • [34] Detection of Anomalous Diffusion with Deep Residual Networks
    Gajowczyk, Milosz
    Szwabinski, Janusz
    ENTROPY, 2021, 23 (06)
  • [35] Detecting Defects in PCB using Deep Learning via Convolution Neural Networks
    Adibhatla, Venkat Anil
    Shieh, Jiann-Shing
    Abbod, Maysam F.
    Chih, Huan-Chuang
    Hsu, Chi-Chang
    Cheng, Joseph
    2018 13TH INTERNATIONAL MICROSYSTEMS, PACKAGING, ASSEMBLY AND CIRCUITS TECHNOLOGY CONFERENCE (IMPACT), 2018, : 202 - 205
  • [36] A deep learning-based system capable of detecting pneumothorax via electrocardiogram
    Lee, Chiao-Chin
    Lin, Chin-Sheng
    Tsai, Chien-Sung
    Tsao, Tien-Ping
    Cheng, Cheng-Chung
    Liou, Jun-Ting
    Lin, Wei-Shiang
    Lee, Chia-Cheng
    Chen, Jiann-Torng
    Lin, Chin
    EUROPEAN JOURNAL OF TRAUMA AND EMERGENCY SURGERY, 2022, 48 (04) : 3317 - 3326
  • [37] A deep learning-based system capable of detecting pneumothorax via electrocardiogram
    Chiao-Chin Lee
    Chin-Sheng Lin
    Chien-Sung Tsai
    Tien-Ping Tsao
    Cheng-Chung Cheng
    Jun-Ting Liou
    Wei-Shiang Lin
    Chia-Cheng Lee
    Jiann-Torng Chen
    Chin Lin
    European Journal of Trauma and Emergency Surgery, 2022, 48 : 3317 - 3326
  • [38] Detecting Marine Species in Echograms via Traditional, Hybrid, and Deep Learning Frameworks
    Marques, Tunai Porto
    Rezvanifar, Alireza
    Cote, Melissa
    Albu, Alexandra Branzan
    Ersahin, Kaan
    Mudge, Todd
    Gauthier, Stephane
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5928 - 5935
  • [39] DeepCancer: Detecting Cancer via Deep Generative Learning through Gene Expressions
    Bhat, Rajendra Rana
    Viswanath, Vivek
    Li, Xiaolin
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 901 - 908
  • [40] Effectively Detecting Communities by Adjusting Initial Structure via Cores
    Chen, Mei
    Yang, Zhichong
    Wen, Xiaofang
    Leng, Mingwei
    Zhang, Mei
    Li, Ming
    COMPLEXITY, 2019, 2019