Effectively detecting anomalous diffusion via deep learning

被引:0
|
作者
Pacheco-Pozo, Adrian [1 ,2 ]
Krapf, Diego [1 ,2 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 10期
关键词
10;
D O I
10.1038/s43588-024-00705-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A deep learning algorithm is presented to classify single-particle tracking trajectories into theoretical models of anomalous diffusion and detect if the trajectory is related to a model not originally found within the training dataset.
引用
收藏
页码:731 / 732
页数:2
相关论文
共 50 条
  • [11] Detecting Linear Block Codes via Deep Learning
    Yardi, Arti
    Kancharla, Vamshi Krishna
    Mishra, Amrita
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [12] Unsupervised Deep Learning via Affinity Diffusion
    Huang, Jiabo
    Dong, Qi
    Gong, Shaogang
    Zhu, Xiatian
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11029 - 11036
  • [13] Characterization of anomalous diffusion classical statistics powered by deep learning (CONDOR)
    Gentili, Alessia
    Volpe, Giorgio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (31)
  • [14] Detecting Botrytis Cinerea Control Efficacy via Deep Learning
    Yi, Wenlong
    Zhang, Xunsheng
    Dai, Shiming
    Kuzmin, Sergey
    Gerasimov, Igor
    Cheng, Xiangping
    AGRICULTURE-BASEL, 2024, 14 (11):
  • [15] Detecting Smiles of Young Children via Deep Transfer Learning
    Xia, Yu
    Huang, Di
    Wang, Yunhong
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 1673 - 1681
  • [16] Detecting Spying Activities from the Sky via Deep Learning
    Raja, Ashok
    Yuan, Jiawei
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [17] Detecting Anomalies in Encrypted Traffic via Deep Dictionary Learning
    Xing, Junchi
    Wu, Chunming
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 734 - 739
  • [18] Detecting Anomalous Multivariate Time-Series via Hybrid Machine Learning
    Terbuch, Anika
    O'Leary, Paul
    Khalili-Motlagh-Kasmaei, Negin
    Auer, Peter
    Zohrer, Alexander
    Winter, Vincent
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [19] Detecting Product Adoption Intentions via Multiview Deep Learning
    Zhang, Zhu
    Wei, Xuan
    Zheng, Xiaolong
    Li, Qiudan
    Zeng, Daniel Dajun
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (01) : 541 - 556
  • [20] Detecting COVID-19 Effectively with Transformers and CNN-Based Deep Learning Mechanisms
    Umejiaku, Afamefuna Promise
    Dhakal, Prastab
    Sheng, Victor S.
    APPLIED SCIENCES-BASEL, 2023, 13 (06):