Effectively detecting anomalous diffusion via deep learning

被引:0
|
作者
Pacheco-Pozo, Adrian [1 ,2 ]
Krapf, Diego [1 ,2 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2024年 / 4卷 / 10期
关键词
10;
D O I
10.1038/s43588-024-00705-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A deep learning algorithm is presented to classify single-particle tracking trajectories into theoretical models of anomalous diffusion and detect if the trajectory is related to a model not originally found within the training dataset.
引用
收藏
页码:731 / 732
页数:2
相关论文
共 50 条
  • [1] Detecting Anomalous Web Browsing via Diffusion Wavelets
    Suen, Ho Yan
    Lau, Wing Cheong
    Yue, OnChing
    2010 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2010,
  • [2] Cross Deep Learning Method for Effectively Detecting the Propagation of IoT Botnet
    Wazzan, Majda
    Algazzawi, Daniyal
    Albeshri, Aiiad
    Hasan, Syed
    Rabie, Osama
    Asghar, Muhammad Zubair
    SENSORS, 2022, 22 (10)
  • [3] Anomalous diffusion dynamics of learning in deep neural networks
    Chen, Guozhang
    Qu, Cheng Kevin
    Gong, Pulin
    NEURAL NETWORKS, 2022, 149 : 18 - 28
  • [4] Detecting singleton spams in reviews via learning deep anomalous temporal aspect-sentiment patterns
    Yassien Shaalan
    Xiuzhen Zhang
    Jeffrey Chan
    Mahsa Salehi
    Data Mining and Knowledge Discovery, 2021, 35 : 450 - 504
  • [5] Detecting singleton spams in reviews via learning deep anomalous temporal aspect-sentiment patterns
    Shaalan, Yassien
    Zhang, Xiuzhen
    Chan, Jeffrey
    Salehi, Mahsa
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (02) : 450 - 504
  • [6] Towards Detecting Dementia via Deep Learning
    Bansal, Deepika
    Khanna, Kavita
    Chhikara, Rita
    Dua, Rakesh Kumar
    Malhotra, Rajeev
    INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2021, 16 (04)
  • [7] Detecting anomalous events in videos by learning deep representations of appearance and motion
    Xu, Dan
    Yan, Yan
    Ricci, Elisa
    Sebe, Nicu
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 156 : 117 - 127
  • [8] Bayesian deep learning for error estimation in the analysis of anomalous diffusion
    Seckler, Henrik
    Metzler, Ralf
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Bayesian deep learning for error estimation in the analysis of anomalous diffusion
    Henrik Seckler
    Ralf Metzler
    Nature Communications, 13
  • [10] Detecting the chiral magnetic effect via deep learning
    Zhao, Yuan-Sheng
    Wang, Lingxiao
    Zhou, Kai
    Huang, Xu-Guang
    PHYSICAL REVIEW C, 2022, 106 (05)