On a p(x)-Kirchhoff-type Equation with Singular and Superlinear Nonlinearities

被引:1
|
作者
Avci, Mustafa [1 ]
机构
[1] Athabasca Univ, Fac Sci & Technol, Appl Math, 1 Univ Dr, Athabasca, AB T9S 3A3, Canada
基金
芬兰科学院;
关键词
p(x)-Kirchhoff equation; Ekeland's variational principle; Constrained minimization; Strong Singularity; Superlinear nonlinearity; BOUNDARY-VALUE PROBLEM; POSITIVE SOLUTIONS; VARIABLE EXPONENT; ELLIPTIC PROBLEMS; MULTIPLICITY; EXISTENCE; SPACES;
D O I
10.1007/s12591-024-00702-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we study a p(x)-Kirchhoff-type equation with combined effects of variable singular and superlinear nonlinearities. Using the Ekeland's variational principle and a constrained minimization approach, we show the existence and uniqueness of a posi-tive solution for the case variable singularity beta(x) assumes its values in the interval (1,infinity) , i.e., the case where beta(x) causes a strong singularity.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Existence and concentration of ground state solutions for critical Kirchhoff-type equation involving Hartree-type nonlinearities
    Yin, Lifeng
    Gan, Wenbin
    Jiang, Shuai
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [42] A Kirchhoff-type problem involving concave-convex nonlinearities
    Yuan Gao
    Lishan Liu
    Shixia Luan
    Yonghong Wu
    Advances in Difference Equations, 2021
  • [43] Existence and concentration of ground state solutions for critical Kirchhoff-type equation involving Hartree-type nonlinearities
    Lifeng Yin
    Wenbin Gan
    Shuai Jiang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [44] Minimax method involving singular p(x)-Kirchhoff equation
    Ben Ali, K.
    Ghanmi, A.
    Kefi, K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [45] Existence and Multiplicity of Solutions for p(x)-Kirchhoff-Type Problem in RN
    Wei, Mei-Chun
    Tang, Chun-Lei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) : 767 - 781
  • [46] Existence and multiplicity of solutions for fractional p(x)-Kirchhoff-type problems
    Hao, Zhiwei
    Zheng, Huiqin
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (06): : 3309 - 3321
  • [47] On indefinite Kirchhoff-type equations under the combined effect of linear and superlinear terms
    Sun, Juntao
    Wang, Kuan-Hsiang
    Wu, Tsung-fang
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [48] Sign-changing solutions for Kirchhoff-type equations with indefinite nonlinearities
    Zhiying Cui
    Wei Shuai
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [49] Nodal solution for Kirchhoff-type problems with concave-convex nonlinearities
    Chen, Bin
    Ou, Zeng-Qi
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (09) : 1534 - 1549
  • [50] Sign-changing solutions for Kirchhoff-type equations with indefinite nonlinearities
    Cui, Zhiying
    Shuai, Wei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):