On a p(x)-Kirchhoff-type Equation with Singular and Superlinear Nonlinearities

被引:1
|
作者
Avci, Mustafa [1 ]
机构
[1] Athabasca Univ, Fac Sci & Technol, Appl Math, 1 Univ Dr, Athabasca, AB T9S 3A3, Canada
基金
芬兰科学院;
关键词
p(x)-Kirchhoff equation; Ekeland's variational principle; Constrained minimization; Strong Singularity; Superlinear nonlinearity; BOUNDARY-VALUE PROBLEM; POSITIVE SOLUTIONS; VARIABLE EXPONENT; ELLIPTIC PROBLEMS; MULTIPLICITY; EXISTENCE; SPACES;
D O I
10.1007/s12591-024-00702-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we study a p(x)-Kirchhoff-type equation with combined effects of variable singular and superlinear nonlinearities. Using the Ekeland's variational principle and a constrained minimization approach, we show the existence and uniqueness of a posi-tive solution for the case variable singularity beta(x) assumes its values in the interval (1,infinity) , i.e., the case where beta(x) causes a strong singularity.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Multiple positive solutions for a fractional Kirchhoff type equation with logarithmic and singular nonlinearities
    Lei, Jun
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (53) : 1 - 16
  • [32] Multiplicity of Solutions for Kirchhoff-Type Problem with Two-Superlinear Potentials
    Liu, Guanggang
    Shi, Shaoyun
    Wei, Yucheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (04) : 1657 - 1673
  • [33] Multiplicity of Solutions for Kirchhoff-Type Problem with Two-Superlinear Potentials
    Guanggang Liu
    Shaoyun Shi
    Yucheng Wei
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 1657 - 1673
  • [34] Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian
    Zhang Binlin
    Radulescu, Vicentiu D.
    Wang, Li
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1061 - 1081
  • [35] Existence of nontrivial solutions for Kirchhoff-type problems with jumping nonlinearities
    Rong, Ting
    Li, Fuyi
    Liang, Zhanping
    APPLIED MATHEMATICS LETTERS, 2019, 95 (137-142) : 137 - 142
  • [36] Kirchhoff-type system with linear weak damping and logarithmic nonlinearities
    Wang, Xingchang
    Chen, Yuxuan
    Yang, Yanbing
    Li, Jiaheng
    Xu, Runzhang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 188 : 475 - 499
  • [37] Elliptic anisotropic Kirchhoff-type problems with singular term
    Mohammed Massar
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 419 - 440
  • [38] Elliptic anisotropic Kirchhoff-type problems with singular term
    Massar, Mohammed
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 419 - 440
  • [39] A Kirchhoff-type problem involving concave-convex nonlinearities
    Gao, Yuan
    Liu, Lishan
    Luan, Shixia
    Wu, Yonghong
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [40] AN OPTIMAL CONTROL PROBLEM FOR A KIRCHHOFF-TYPE EQUATION
    Delgado, M.
    Figueiredo, G. M.
    Gayte, I.
    Morales-Rodrigo, C.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (03) : 773 - 790