On the Teichmüller space of acute triangles

被引:0
|
作者
Miyachi, Hideki [1 ]
Ohshika, Ken'ichi [2 ]
Papadopoulos, Athanase [3 ,4 ]
机构
[1] Kanazawa Univ, Coll Sci & Engn, Sch Math & Phys, Kanazawa, Ishikawa 9201192, Japan
[2] Gakushuin Univ, Dept Math, 1-5-1 Mejiro,Toshima Ku, Tokyo, 1718588, Japan
[3] Univ Strasbourg, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[4] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
来源
关键词
Thurston's asymmetric metric; Lipschitz metric; Extreme Lipschitz maps; Stretch locus; Teichm & uuml; ller theory; Space of Euclidean triangles; Geodesics; Finsler structure; TEICHMULLER SPACE;
D O I
10.1007/s00605-024-02017-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the analogue of Thurston's metric on the Teichm & uuml;ller space of Euclidean triangles which was started by Saglam-Papadopoulos (Minimal stretch maps between Euclidean triangles, 2022). By direct calculation, we give explicit expressions of the distance function and the Finsler structure of the metric restricted to the subspace of acute triangles. We deduce from the form of the Finsler unit sphere a result on the infinitesimal rigidity of the metric. We give a description of the maximal stretching loci for a family of extreme Lipschitz maps.
引用
收藏
页码:649 / 666
页数:18
相关论文
共 50 条
  • [31] UNIVERSAL COMMENSURABILITY AUGMENTED TEICHMÜLLER SPACE AND MODULI SPACE
    Hu, Guangming
    Miyachi, Hideki
    Qi, Yi
    ANNALES FENNICI MATHEMATICI, 2021, 46 (02): : 897 - 907
  • [32] Besov Functions and Tangent Space to the Integrable Teichmüller Space
    Shu’an TANG
    Xiaogao FENG
    Yuliang SHEN
    Chinese Annals of Mathematics,Series B, 2018, 39 (06) : 963 - 972
  • [33] Besov Functions and Tangent Space to the Integrable Teichmüller Space
    Shu’an Tang
    Xiaogao Feng
    Yuliang Shen
    Chinese Annals of Mathematics, Series B, 2018, 39 : 963 - 972
  • [34] On the Carathéodory metric of universal Teichmüller space
    Krushkal S.L.
    Journal of Mathematical Sciences, 2022, 262 (2) : 184 - 193
  • [35] Notes on Univalent Functions and the Universal Teichmüller Space
    沈玉良
    数学进展, 1997, (04) : 48 - 51
  • [36] Energy, Hopf Differential, and Metrics on Teichmüller Space
    Zongliang Sun
    Hui Guo
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1223 - 1231
  • [37] Bounded combinatorics and the Lipschitz metric on Teichmüller space
    Anna Lenzhen
    Kasra Rafi
    Jing Tao
    Geometriae Dedicata, 2012, 159 : 353 - 371
  • [38] Stability of quasi-geodesics in Teichmüller space
    Ursula Hamenstädt
    Geometriae Dedicata, 2010, 146 : 101 - 116
  • [39] Local rigidity of the Teichmüller space with the Thurston metric
    Huiping Pan
    Science China Mathematics, 2023, 66 (08) : 1751 - 1766
  • [40] Local rigidity of the Teichmüller space with the Thurston metric
    Huiping Pan
    Science China Mathematics, 2023, 66 : 1751 - 1766