On the Teichmüller space of acute triangles

被引:0
|
作者
Miyachi, Hideki [1 ]
Ohshika, Ken'ichi [2 ]
Papadopoulos, Athanase [3 ,4 ]
机构
[1] Kanazawa Univ, Coll Sci & Engn, Sch Math & Phys, Kanazawa, Ishikawa 9201192, Japan
[2] Gakushuin Univ, Dept Math, 1-5-1 Mejiro,Toshima Ku, Tokyo, 1718588, Japan
[3] Univ Strasbourg, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[4] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
来源
关键词
Thurston's asymmetric metric; Lipschitz metric; Extreme Lipschitz maps; Stretch locus; Teichm & uuml; ller theory; Space of Euclidean triangles; Geodesics; Finsler structure; TEICHMULLER SPACE;
D O I
10.1007/s00605-024-02017-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the analogue of Thurston's metric on the Teichm & uuml;ller space of Euclidean triangles which was started by Saglam-Papadopoulos (Minimal stretch maps between Euclidean triangles, 2022). By direct calculation, we give explicit expressions of the distance function and the Finsler structure of the metric restricted to the subspace of acute triangles. We deduce from the form of the Finsler unit sphere a result on the infinitesimal rigidity of the metric. We give a description of the maximal stretching loci for a family of extreme Lipschitz maps.
引用
收藏
页码:649 / 666
页数:18
相关论文
共 50 条