Quantum superpositions of current states in Rydberg-atom networks

被引:0
|
作者
Perciavalle, Francesco [1 ,2 ,3 ]
Rossini, Davide [2 ,3 ]
Polo, Juan [1 ]
Morsch, Oliver [4 ,5 ]
Amico, Luigi [1 ,6 ,7 ]
机构
[1] Technol Innovat Inst, Quantum Res Ctr, POB 9639, Abu Dhabi, U Arab Emirates
[2] Univ Pisa, Dipartimento Fis dell, Largo Pontecorvo 3, I-56127 Pisa, Italy
[3] INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy
[4] CNR, INO, Largo Pontecorvo 3, I-56127 Pisa, Italy
[5] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[6] Astron Ettore Majorana Univ Catania, Dipartimento Fis, Via S Sofia 64, I-95123 Catania, Italy
[7] INFN, Sez Catania, Via S Sofia 64, I-95123 Catania, Italy
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
欧盟地平线“2020”;
关键词
SIMULATIONS; DYNAMICS; PHYSICS;
D O I
10.1103/PhysRevResearch.6.043025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum simulation of many-body quantum systems using Rydberg-atom platforms has become of extreme interest in the last years. The possibility to realize spin Hamiltonians and the accurate control at the single atom level paved the way for the study of quantum phases of matter and dynamics. Here, we propose a quantum optimal control protocol to engineer current states: quantum states characterized by Rydberg excitations propagating in a given spatially closed tweezer networks. Indeed, current states with different winding numbers can be generated on demand. Besides those ones with single winding number, superposition of quantum current states characterized by more winding numbers can be obtained. The single current states are eigenstates of the current operator that therefore can define an observable that remains persistent at any time. In particular, the features of the excitations dynamics reflects the nature of current states, a fact that in principle can be used to characterize the nature of the flow experimentally without the need of accessing high order correlators.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Closed-loop quantum interferometry for phase-resolved Rydberg-atom field sensing
    Berweger, Samuel
    Artusio-Glimpse, Alexandra B.
    Rotunno, Andrew P.
    Prajapati, Nikunjkumar
    Christesen, Joseph D.
    Moore, Kaitlin R.
    Simons, Matthew T.
    Holloway, Christopher L.
    PHYSICAL REVIEW APPLIED, 2023, 20 (05)
  • [42] QUANTUM NONDEMOLITION MEASUREMENT OF SMALL PHOTON NUMBERS BY RYDBERG-ATOM PHASE-SENSITIVE DETECTION
    BRUNE, M
    HAROCHE, S
    LEFEVRE, V
    RAIMOND, JM
    ZAGURY, N
    PHYSICAL REVIEW LETTERS, 1990, 65 (08) : 976 - 979
  • [43] Rydberg-Atom Graphs for Quadratic Unconstrained Binary Optimization Problems
    Byun, Andrew
    Jung, Junwoo
    Kim, Kangheun
    Kim, Minhyuk
    Jeong, Seokho
    Jeong, Heejeong
    Ahn, Jaewook
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (08)
  • [44] Electric Field Effects in the Excitation of Cold Rydberg-Atom Pairs
    Nascimento, V. A.
    Caliri, L. L.
    Schwettmann, A.
    Shaffer, J. P.
    Marcassa, L. G.
    PHYSICAL REVIEW LETTERS, 2009, 102 (21)
  • [45] RYDBERG-ATOM WAVE-PACKETS LOCALIZED IN THE ANGULAR VARIABLES
    YEAZELL, JA
    STROUD, CR
    PHYSICAL REVIEW A, 1987, 35 (07): : 2806 - 2809
  • [46] Rydberg-Atom Manipulation through Strong Interaction with Free Electrons
    Synanidis, Adamantios P.
    Goncalves, P. A. D.
    de Abajo, F. Javier Garcia
    ACS NANO, 2025, 19 (12) : 11891 - 11899
  • [47] Resonant Structures for Sensitivity Enhancement of Rydberg-Atom Microwave Receivers
    Sandidge, Georgia
    Santamaria-Botello, Gabriel
    Bottomley, Eric
    Fan, Haoquan
    Popovic, Zoya
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (04) : 2057 - 2066
  • [48] SEMICLASSICAL APPROACH TO RYDBERG-ATOM INTERCOMBINATION TRANSITIONS IN COLLISIONS WITH ELECTRONS
    SYRKIN, MI
    PHYSICAL REVIEW A, 1994, 50 (03): : 2284 - 2291
  • [49] Collective Excitation of Rydberg-Atom Ensembles beyond the Superatom Model
    Gaerttner, Martin
    Whitlock, Shannon
    Schoenleber, David W.
    Evers, Joerg
    PHYSICAL REVIEW LETTERS, 2014, 113 (23)
  • [50] Sensitivity of a Rydberg-atom receiver to frequency and amplitude modulation of microwaves
    Borowka, Sebastian
    Pylypenko, Uliana
    Mazelanik, Mateusz
    Parniak, Michal
    APPLIED OPTICS, 2022, 61 (29) : 8806 - 8812