Quantum superpositions of current states in Rydberg-atom networks

被引:0
|
作者
Perciavalle, Francesco [1 ,2 ,3 ]
Rossini, Davide [2 ,3 ]
Polo, Juan [1 ]
Morsch, Oliver [4 ,5 ]
Amico, Luigi [1 ,6 ,7 ]
机构
[1] Technol Innovat Inst, Quantum Res Ctr, POB 9639, Abu Dhabi, U Arab Emirates
[2] Univ Pisa, Dipartimento Fis dell, Largo Pontecorvo 3, I-56127 Pisa, Italy
[3] INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy
[4] CNR, INO, Largo Pontecorvo 3, I-56127 Pisa, Italy
[5] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[6] Astron Ettore Majorana Univ Catania, Dipartimento Fis, Via S Sofia 64, I-95123 Catania, Italy
[7] INFN, Sez Catania, Via S Sofia 64, I-95123 Catania, Italy
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
欧盟地平线“2020”;
关键词
SIMULATIONS; DYNAMICS; PHYSICS;
D O I
10.1103/PhysRevResearch.6.043025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum simulation of many-body quantum systems using Rydberg-atom platforms has become of extreme interest in the last years. The possibility to realize spin Hamiltonians and the accurate control at the single atom level paved the way for the study of quantum phases of matter and dynamics. Here, we propose a quantum optimal control protocol to engineer current states: quantum states characterized by Rydberg excitations propagating in a given spatially closed tweezer networks. Indeed, current states with different winding numbers can be generated on demand. Besides those ones with single winding number, superposition of quantum current states characterized by more winding numbers can be obtained. The single current states are eigenstates of the current operator that therefore can define an observable that remains persistent at any time. In particular, the features of the excitations dynamics reflects the nature of current states, a fact that in principle can be used to characterize the nature of the flow experimentally without the need of accessing high order correlators.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Rydberg-atom quantum simulation and Chern-number characterization of a topological Mott insulator
    Dauphin, A.
    Mueller, M.
    Martin-Delgado, M. A.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [32] Rydberg-atom formation in strongly correlated ultracold plasmas
    Bannasch, G.
    Pohl, T.
    PHYSICAL REVIEW A, 2011, 84 (05):
  • [33] Optimal State Choice for Rydberg-Atom Microwave Sensors
    Chopinaud, A.
    Pritchard, J. D.
    PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [34] THEORY OF THE RYDBERG-ATOM 2-PHOTON MICROMASER
    BRUNE, M
    RAIMOND, JM
    HAROCHE, S
    PHYSICAL REVIEW A, 1987, 35 (01): : 154 - 163
  • [35] THEORY OF THE RYDBERG-ATOM ONE-PHOTON MICROMASER
    NAYAK, N
    DAS, D
    PHYSICAL REVIEW A, 1993, 48 (03): : 2475 - 2478
  • [36] Symmetry and symmetry breaking in Rydberg-atom intrashell dynamics
    Pilskog, I.
    Fregenal, D.
    Frette, O.
    Forre, M.
    Horsdal, E.
    Waheed, A.
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [37] DARK-STATE EFFECT IN RYDBERG-ATOM STABILIZATION
    WOJCIK, A
    PARZYNSKI, R
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1995, 12 (03) : 369 - 376
  • [38] Interaction-Enhanced Superradiance of a Rydberg-Atom Array
    Han, Yiwen
    Li, Haowei
    Yi, Wei
    PHYSICAL REVIEW LETTERS, 2024, 133 (24)
  • [39] Rotary echo tests of coherence in Rydberg-atom excitation
    Younge, Kelly Cooper
    Raithel, Georg
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [40] Rydberg-atom acceleration by circular Airy laser pulses
    Huang, Songxin
    Wu, Ruihuan
    Deng, Dongmei
    Hong, Weiyi
    OPTICS LETTERS, 2024, 49 (03) : 762 - 765