Quantum superpositions of current states in Rydberg-atom networks

被引:0
|
作者
Perciavalle, Francesco [1 ,2 ,3 ]
Rossini, Davide [2 ,3 ]
Polo, Juan [1 ]
Morsch, Oliver [4 ,5 ]
Amico, Luigi [1 ,6 ,7 ]
机构
[1] Technol Innovat Inst, Quantum Res Ctr, POB 9639, Abu Dhabi, U Arab Emirates
[2] Univ Pisa, Dipartimento Fis dell, Largo Pontecorvo 3, I-56127 Pisa, Italy
[3] INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy
[4] CNR, INO, Largo Pontecorvo 3, I-56127 Pisa, Italy
[5] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[6] Astron Ettore Majorana Univ Catania, Dipartimento Fis, Via S Sofia 64, I-95123 Catania, Italy
[7] INFN, Sez Catania, Via S Sofia 64, I-95123 Catania, Italy
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
欧盟地平线“2020”;
关键词
SIMULATIONS; DYNAMICS; PHYSICS;
D O I
10.1103/PhysRevResearch.6.043025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum simulation of many-body quantum systems using Rydberg-atom platforms has become of extreme interest in the last years. The possibility to realize spin Hamiltonians and the accurate control at the single atom level paved the way for the study of quantum phases of matter and dynamics. Here, we propose a quantum optimal control protocol to engineer current states: quantum states characterized by Rydberg excitations propagating in a given spatially closed tweezer networks. Indeed, current states with different winding numbers can be generated on demand. Besides those ones with single winding number, superposition of quantum current states characterized by more winding numbers can be obtained. The single current states are eigenstates of the current operator that therefore can define an observable that remains persistent at any time. In particular, the features of the excitations dynamics reflects the nature of current states, a fact that in principle can be used to characterize the nature of the flow experimentally without the need of accessing high order correlators.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Tunable Sensitivity Enhancement of a Rydberg-Atom Electrometer
    Sandidge, Georgia
    Santamaria-Botello, Gabriel
    Popovic, Zoya
    2024 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS, CPEM 2024, 2024,
  • [22] Chiral microresonator assisted by Rydberg-atom ensembles
    Liu, Xiao-Fei
    Wang, Tie-Jun
    Gao, Yong-Pan
    Cao, Cong
    Wang, Chuan
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [23] Rydberg-atom trajectories in a ponderomotive optical lattice
    Younge, Kelly Cooper
    Anderson, Sarah Elizabeth
    Raithel, Georg
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [24] Rydberg-atom experiment for the integer factorization problem
    Park, Juyoung
    Jeong, Seokho
    Kim, Minhyuk
    Kim, Kangheun
    Byun, Andrew
    Vignoli, Louis
    Henry, Louis-Paul
    Henriet, Loic
    Ahn, Jaewook
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [25] Rydberg-atom acceleration with pulsed Pearcey beams
    Huang, Songxin
    Hong, Weiyi
    Wu, Ruihuan
    APPLIED PHYSICS B-LASERS AND OPTICS, 2024, 130 (11):
  • [26] RESONANT IONIZATION IN SLOW-ATOM RYDBERG-ATOM COLLISIONS
    JANEV, RK
    MIHAJLOV, AA
    PHYSICAL REVIEW A, 1980, 21 (03) : 819 - 826
  • [27] Quantum-brachistochrone approach to the conversion from W to Greenberger-Horne-Zeilinger states for Rydberg-atom qubits
    Nauth, Julian K.
    Stojanovic, Vladimir M.
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [28] Coherent states in a Rydberg atom: Quantum mechanics
    Cerjan, C
    Lee, E
    Farrelly, D
    Uzer, T
    PHYSICAL REVIEW A, 1997, 55 (03): : 2222 - 2231
  • [29] Coherent states in a Rydberg atom: quantum mechanics
    Cerjan, Charles
    Lee, Ernestine
    Farrelly, David
    Uzer, T.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1997, 55 (03):
  • [30] Photon-photon interactions in Rydberg-atom arrays
    Zhang, Lida
    Walther, Valentin
    Molmer, Klaus
    Pohl, Thomas
    QUANTUM, 2022, 6