Quantum superpositions of current states in Rydberg-atom networks

被引:0
|
作者
Perciavalle, Francesco [1 ,2 ,3 ]
Rossini, Davide [2 ,3 ]
Polo, Juan [1 ]
Morsch, Oliver [4 ,5 ]
Amico, Luigi [1 ,6 ,7 ]
机构
[1] Technol Innovat Inst, Quantum Res Ctr, POB 9639, Abu Dhabi, U Arab Emirates
[2] Univ Pisa, Dipartimento Fis dell, Largo Pontecorvo 3, I-56127 Pisa, Italy
[3] INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy
[4] CNR, INO, Largo Pontecorvo 3, I-56127 Pisa, Italy
[5] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[6] Astron Ettore Majorana Univ Catania, Dipartimento Fis, Via S Sofia 64, I-95123 Catania, Italy
[7] INFN, Sez Catania, Via S Sofia 64, I-95123 Catania, Italy
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
欧盟地平线“2020”;
关键词
SIMULATIONS; DYNAMICS; PHYSICS;
D O I
10.1103/PhysRevResearch.6.043025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum simulation of many-body quantum systems using Rydberg-atom platforms has become of extreme interest in the last years. The possibility to realize spin Hamiltonians and the accurate control at the single atom level paved the way for the study of quantum phases of matter and dynamics. Here, we propose a quantum optimal control protocol to engineer current states: quantum states characterized by Rydberg excitations propagating in a given spatially closed tweezer networks. Indeed, current states with different winding numbers can be generated on demand. Besides those ones with single winding number, superposition of quantum current states characterized by more winding numbers can be obtained. The single current states are eigenstates of the current operator that therefore can define an observable that remains persistent at any time. In particular, the features of the excitations dynamics reflects the nature of current states, a fact that in principle can be used to characterize the nature of the flow experimentally without the need of accessing high order correlators.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] RESONANT RYDBERG-ATOM RYDBERG-ATOM COLLISIONS
    GALLAGHER, TF
    SAFINYA, KA
    GOUNAND, F
    DELPECH, JF
    SANDNER, W
    KACHRU, R
    PHYSICAL REVIEW A, 1982, 25 (04): : 1905 - 1917
  • [2] RESONANT RYDBERG-ATOM RYDBERG-ATOM COLLISIONS
    SAFINYA, KA
    DELPECH, JF
    GOUNAND, F
    SANDNER, W
    GALLAGHER, TF
    PHYSICAL REVIEW LETTERS, 1981, 47 (06) : 405 - 408
  • [3] Analysis of coherent dynamics of a Rydberg-atom quantum simulator
    Tamura, Hikaru
    Yamakoshi, Tomotake
    Nakagawa, Ken'ichi
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [4] RADIATIVE RYDBERG-ATOM RYDBERG-ATOM COLLISIONS IN THE STRONG-FIELD REGIME
    PILLET, P
    KACHRU, R
    TRAN, NH
    SMITH, WW
    GALLAGHER, TF
    PHYSICAL REVIEW A, 1987, 36 (03): : 1132 - 1147
  • [5] Realizing topological edge states with Rydberg-atom synthetic dimensions
    Kanungo, S. K.
    Whalen, J. D.
    Lu, Y.
    Yuan, M.
    Dasgupta, S.
    Dunning, F. B.
    Hazzard, K. R. A.
    Killian, T. C.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] A randomized measurement toolbox for an interacting Rydberg-atom quantum simulator
    Notarnicola, Simone
    Elben, Andreas
    Lahaye, Thierry
    Browaeys, Antoine
    Montangero, Simone
    Vermersch, Benoit
    NEW JOURNAL OF PHYSICS, 2023, 25 (10):
  • [7] Electric Rydberg-Atom Interferometry
    Palmer, J. E.
    Hogan, S. D.
    PHYSICAL REVIEW LETTERS, 2019, 122 (25)
  • [8] DETECTION OF RYDBERG-ATOM MICROMASERS
    WANG, LZ
    PHYSICAL REVIEW A, 1992, 45 (01): : R27 - R30
  • [9] Approaching the standard quantum limit of a Rydberg-atom microwave electrometer
    Tu, Hai-Tao
    Liao, Kai-Yu
    Wang, Hong-Lei
    Zhu, Yi-Fei
    Qiu, Si-Yuan
    Jiang, Hao
    Huang, Wei
    Bian, Wu
    Yan, Hui
    Zhu, Shi-Liang
    SCIENCE ADVANCES, 2024, 10 (51):
  • [10] Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators
    Kim, Hyosub
    Park, YeJe
    Kim, Kyungtae
    Sim, H-S
    Ahn, Jaewook
    PHYSICAL REVIEW LETTERS, 2018, 120 (18)