Segment-wise Evaluation in X-ray Angiography Stenosis Detection

被引:0
|
作者
Popp, Antonia [1 ,2 ,3 ,4 ,5 ,6 ]
El Al, Alaa Abd [1 ,3 ,4 ,5 ,6 ]
Hoffmann, Marie [1 ,3 ,4 ,5 ,6 ]
Laube, Ann [2 ,3 ,4 ,5 ,6 ,8 ]
McGranaghan, Peter [1 ,3 ,4 ,5 ,6 ,8 ,9 ,10 ]
Falk, Volkmar [1 ,3 ,4 ,5 ,6 ,8 ]
Hennemuth, Anja [2 ,3 ,4 ,5 ,6 ,7 ,8 ]
Meyer, Alexander [1 ,3 ,4 ,5 ,6 ]
机构
[1] DHZC Berlin, Dept Cardiothorac & Vasc Surg, Berlin, Germany
[2] DHZC Berlin, Inst Comp Assisted Cardiovasc Med, Berlin, Germany
[3] Charite Univ Med Berlin, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] Humboldt Univ, Berlin, Germany
[6] Berlin Inst Hlth, Berlin, Germany
[7] Fraunhofer Inst Digital Med MEVIS, Berlin, Germany
[8] DZHK German Ctr Cardiovasc Res, Partner Site Berlin, Berlin, Germany
[9] Baptist Hlth South Florida, Miami, FL USA
[10] Semmelweis Univ, Budapest, Hungary
来源
BILDVERARBEITUNG FUR DIE MEDIZIN 2024 | 2024年
关键词
D O I
10.1007/978-3-658-44037-4_36
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
X-ray coronary angiography is the gold standard imaging modality for the assessment of coronary artery disease (CAD). The SYNTAX score is a recommended instrument for therapy decision-making and predicts the postprocedural risk associated with the two revascularization strategies: percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG). The score requires expert assessment and manual measurements of coronary angiograms for stenosis characterization. In this work we propose a deep learning workflow for automated stenosis detection to facilitate the calculation of the SYNTAX score. We use a region-based convolutional neural network for object detection, fine-tuned on a public dataset consisting of angiography frames with annotated stenotic regions. The model is evaluated on angiographic video sequences of complex CAD patients from the German Heart Center of the Charite University Hospital (DHZC), Berlin. We provide a customized graphical tool for cardiac experts that allows correction and segment annotation of the detected stenotic regions. The model reached a precision of 78.39% in the frame-wise object detection task on the clinical dataset. For the task of predicting the presence of coronary stenoses at the patient level, the model achieved a sensitivity of 49.55% for stenoses of all degrees and 59.18% for stenoses of relevant degrees (>75%). The results suggest that our stenosis detection tool can facilitate visual assessment of CAD in angiography data and encourage to investigate further development towards fully automated calculation of the SYNTAX score.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 50 条
  • [41] X-Ray Angiography, Handmaiden to Heart Surgery
    Gershon-Cohen, J.
    SCIENTIFIC MONTHLY, 1954, 78 : 40 - 44
  • [42] ASSESSMENT OF CAROTID-ARTERY STENOSIS BY MR ANGIOGRAPHY - COMPARISON WITH X-RAY ANGIOGRAPHY AND COLOR-CODED DOPPLER ULTRASOUND
    ANDERSON, CM
    SALONER, D
    LEE, RE
    GRISWOLD, VJ
    SHAPEERO, LG
    RAPP, JH
    NAGARKAR, S
    PAN, XM
    GOODING, GAW
    AMERICAN JOURNAL OF NEURORADIOLOGY, 1992, 13 (03) : 989 - 1003
  • [43] 3D x-ray angiography
    Hoffmann, K
    MEDICAL PHYSICS, 2002, 29 (06) : 1278 - 1278
  • [44] Vessel extraction in coronary X-ray angiography
    Wang, Y.
    Toumoulin, C.
    Shu, H. Z.
    Zhou, Z. D.
    Coatrieux, J. L.
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 1584 - 1587
  • [45] CycleGAN for style transfer in X-ray angiography
    Oleksandra Tmenova
    Rémi Martin
    Luc Duong
    International Journal of Computer Assisted Radiology and Surgery, 2019, 14 : 1785 - 1794
  • [46] Evaluation of X-ray reflectivity of a MEMS X-ray optic
    Mitsuishi, I.
    Ezoe, Y.
    Koshiishi, M.
    Mita, M.
    Maeda, Y.
    Yamasaki, N. Y.
    Mitsuda, K.
    Shirata, T.
    Hayashi, T.
    Takano, T.
    Maeda, R.
    2008 IEEE/LEOS INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS, 2008, : 104 - 105
  • [47] Evaluation of a Dual Convolutional Neural Network Architecture for Object-wise Anomaly Detection in Cluttered X-ray Security Imagery
    Gauss, Yona Falinie A.
    Bhowmik, Neelanjan
    Akcay, Samet
    Guillen-Garcia, Paolo M.
    Barker, Jack W.
    Breckon, Toby P.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [48] STQD-Det: Spatio-Temporal Quantum Diffusion Model for Real-Time Coronary Stenosis Detection in X-Ray Angiography
    Li, Xinyu
    Ai, Danni
    Song, Hong
    Fan, Jingfan
    Fu, Tianyu
    Xiao, Deqiang
    Wang, Yining
    Yang, Jian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9908 - 9920
  • [49] GaN for x-ray detection
    Duboz, Jean-Yves
    Lauegt, Marguerite
    Schenk, David
    Beaumont, Bernard
    Reverchon, Jean-Luc
    Wieck, Andreas D.
    Zimmerling, Tino
    APPLIED PHYSICS LETTERS, 2008, 92 (26)
  • [50] X-ray evaluation of the knee
    Kalb, RL
    HOSPITAL PRACTICE, 1997, 32 (08): : 103 - 105