Segment-wise Evaluation in X-ray Angiography Stenosis Detection

被引:0
|
作者
Popp, Antonia [1 ,2 ,3 ,4 ,5 ,6 ]
El Al, Alaa Abd [1 ,3 ,4 ,5 ,6 ]
Hoffmann, Marie [1 ,3 ,4 ,5 ,6 ]
Laube, Ann [2 ,3 ,4 ,5 ,6 ,8 ]
McGranaghan, Peter [1 ,3 ,4 ,5 ,6 ,8 ,9 ,10 ]
Falk, Volkmar [1 ,3 ,4 ,5 ,6 ,8 ]
Hennemuth, Anja [2 ,3 ,4 ,5 ,6 ,7 ,8 ]
Meyer, Alexander [1 ,3 ,4 ,5 ,6 ]
机构
[1] DHZC Berlin, Dept Cardiothorac & Vasc Surg, Berlin, Germany
[2] DHZC Berlin, Inst Comp Assisted Cardiovasc Med, Berlin, Germany
[3] Charite Univ Med Berlin, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] Humboldt Univ, Berlin, Germany
[6] Berlin Inst Hlth, Berlin, Germany
[7] Fraunhofer Inst Digital Med MEVIS, Berlin, Germany
[8] DZHK German Ctr Cardiovasc Res, Partner Site Berlin, Berlin, Germany
[9] Baptist Hlth South Florida, Miami, FL USA
[10] Semmelweis Univ, Budapest, Hungary
关键词
D O I
10.1007/978-3-658-44037-4_36
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
X-ray coronary angiography is the gold standard imaging modality for the assessment of coronary artery disease (CAD). The SYNTAX score is a recommended instrument for therapy decision-making and predicts the postprocedural risk associated with the two revascularization strategies: percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG). The score requires expert assessment and manual measurements of coronary angiograms for stenosis characterization. In this work we propose a deep learning workflow for automated stenosis detection to facilitate the calculation of the SYNTAX score. We use a region-based convolutional neural network for object detection, fine-tuned on a public dataset consisting of angiography frames with annotated stenotic regions. The model is evaluated on angiographic video sequences of complex CAD patients from the German Heart Center of the Charite University Hospital (DHZC), Berlin. We provide a customized graphical tool for cardiac experts that allows correction and segment annotation of the detected stenotic regions. The model reached a precision of 78.39% in the frame-wise object detection task on the clinical dataset. For the task of predicting the presence of coronary stenoses at the patient level, the model achieved a sensitivity of 49.55% for stenoses of all degrees and 59.18% for stenoses of relevant degrees (>75%). The results suggest that our stenosis detection tool can facilitate visual assessment of CAD in angiography data and encourage to investigate further development towards fully automated calculation of the SYNTAX score.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 50 条
  • [31] Evaluation of the detection efficiency of an X-ray image sensor
    Wulveryck, JM
    Mouze, D
    X-RAY MICROSCOPY, PROCEEDINGS, 2000, 507 : 358 - 362
  • [32] Single-segment central lumbar spinal stenosis: Correlation with lumbar X-ray measurements
    Yang, Fengguang
    Wang, Yonggang
    Ma, Yingping
    Hu, Xuchang
    Li, Xiangli
    Ma, Zhanjun
    He, Xuegang
    Gao, Yicheng
    Yang, Yong
    Kang, Xuewen
    JOURNAL OF BACK AND MUSCULOSKELETAL REHABILITATION, 2021, 34 (04) : 581 - 587
  • [33] X-RAY IMAGING Perovskites target X-ray detection
    Heiss, Wolfgang
    Brabec, Christoph
    NATURE PHOTONICS, 2016, 10 (05) : 288 - 289
  • [34] Deep Learning-Based Segmentation of Coronary Arteries and Stenosis Detection in X-Ray Coronary Angiography: From Training to External Validation
    Molenaar, Mitchel
    Hebbo, Elsa
    Selder, Jasper
    Shekiladze, Nikoloz
    Sandesara, Pratik
    Nicholson, William
    Asselbergs, Folkert
    Ahmad, Syed
    Gold, Daniel
    Sakr, Shaimaa
    Bescos, Javier Olivan
    Auvray, Vincent
    van Mourik, Martijn
    Haak, Alexander
    Zhao, Yida
    Nieuwendijk, Jelle
    Schuuring, Mark
    Bouma, Berto
    Chamuleau, Steven
    Verouden, Niels
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 84 (18) : B16 - B16
  • [35] Noninvasive Detection of Coronary Artery Stenosis Using 16-slice Spiral CT: a Comparison with Selective X-ray Coronary Angiography
    史河水
    韩萍
    孔祥泉
    冯敢生
    Martin HK Hoffmann
    华中科技大学学报(医学英德文版), 2006, (03) : 338 - 340
  • [36] Noninvasive detection of coronary artery stenosis using 16-slice spiral CT: A comparison with selective X-ray coronary angiography
    Shi Heshui
    Han Ping
    Kong Xiangquan
    Feng Gangsheng
    Martin HK Hoffmann
    Journal of Huazhong University of Science and Technology [Medical Sciences], 2006, 26 (3): : 338 - 340
  • [37] Magnetic resonance angiography is equivalent to X-ray coronary angiography for the evaluation of coronary arteries in Kawasaki disease
    Mavrogeni, S
    Papadopoulos, G
    Douskou, M
    Kaklis, S
    Seimenis, I
    Baras, P
    Nikolaidou, P
    Bakoula, C
    Karanasios, E
    Manginas, A
    Cokkinos, DV
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2004, 43 (04) : 649 - 652
  • [38] CycleGAN for style transfer in X-ray angiography
    Tmenova, Oleksandra
    Martin, Remi
    Luc Duong
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (10) : 1785 - 1794
  • [39] Estimating perfusion using X-ray angiography
    Bogunovic, H
    Loncaric, S
    ISPA 2005: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005, : 147 - 150
  • [40] Coronary X-Ray angiography and cardiac catheterization
    Mulukutla, Suresh R.
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2003, 11 (03) : 161 - 179