Segment-wise Evaluation in X-ray Angiography Stenosis Detection

被引:0
|
作者
Popp, Antonia [1 ,2 ,3 ,4 ,5 ,6 ]
El Al, Alaa Abd [1 ,3 ,4 ,5 ,6 ]
Hoffmann, Marie [1 ,3 ,4 ,5 ,6 ]
Laube, Ann [2 ,3 ,4 ,5 ,6 ,8 ]
McGranaghan, Peter [1 ,3 ,4 ,5 ,6 ,8 ,9 ,10 ]
Falk, Volkmar [1 ,3 ,4 ,5 ,6 ,8 ]
Hennemuth, Anja [2 ,3 ,4 ,5 ,6 ,7 ,8 ]
Meyer, Alexander [1 ,3 ,4 ,5 ,6 ]
机构
[1] DHZC Berlin, Dept Cardiothorac & Vasc Surg, Berlin, Germany
[2] DHZC Berlin, Inst Comp Assisted Cardiovasc Med, Berlin, Germany
[3] Charite Univ Med Berlin, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] Humboldt Univ, Berlin, Germany
[6] Berlin Inst Hlth, Berlin, Germany
[7] Fraunhofer Inst Digital Med MEVIS, Berlin, Germany
[8] DZHK German Ctr Cardiovasc Res, Partner Site Berlin, Berlin, Germany
[9] Baptist Hlth South Florida, Miami, FL USA
[10] Semmelweis Univ, Budapest, Hungary
关键词
D O I
10.1007/978-3-658-44037-4_36
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
X-ray coronary angiography is the gold standard imaging modality for the assessment of coronary artery disease (CAD). The SYNTAX score is a recommended instrument for therapy decision-making and predicts the postprocedural risk associated with the two revascularization strategies: percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG). The score requires expert assessment and manual measurements of coronary angiograms for stenosis characterization. In this work we propose a deep learning workflow for automated stenosis detection to facilitate the calculation of the SYNTAX score. We use a region-based convolutional neural network for object detection, fine-tuned on a public dataset consisting of angiography frames with annotated stenotic regions. The model is evaluated on angiographic video sequences of complex CAD patients from the German Heart Center of the Charite University Hospital (DHZC), Berlin. We provide a customized graphical tool for cardiac experts that allows correction and segment annotation of the detected stenotic regions. The model reached a precision of 78.39% in the frame-wise object detection task on the clinical dataset. For the task of predicting the presence of coronary stenoses at the patient level, the model achieved a sensitivity of 49.55% for stenoses of all degrees and 59.18% for stenoses of relevant degrees (>75%). The results suggest that our stenosis detection tool can facilitate visual assessment of CAD in angiography data and encourage to investigate further development towards fully automated calculation of the SYNTAX score.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 50 条
  • [21] LRSE-Net: Lightweight Residual Squeeze-and-Excitation Network for Stenosis Detection in X-ray Coronary Angiography
    Ovalle-Magallanes, Emmanuel
    Gabriel Avina-Cervantes, Juan
    Cruz-Aceves, Ivan
    Ruiz-Pinales, Jose
    ELECTRONICS, 2022, 11 (21)
  • [22] Coronary artery stenosis detection via proposal-shifted spatial-temporal transformer in X-ray angiography
    Han, Tao
    Ai, Danni
    Li, Xinyu
    Fan, Jingfan
    Song, Hong
    Wang, Yining
    Yang, Jian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
  • [23] WISE and ICARUS: New X-Ray Algorithms to Improve the Detection of Counterfeit Components
    Cardoso, Bill
    ISTFA 2015: CONFERENCE PROCEEDINGS FROM THE 41ST INTERNATIONAL SYMPOSIUM FOR TESTING AND FAILURE ANALYSIS, 2015, : 189 - 198
  • [24] Automatic Feature Selection for Stenosis Detection in X-ray Coronary Angiograms
    Gil-Rios, Miguel-Angel
    Guryev, Igor, V
    Cruz-Aceves, Ivan
    Gabriel Avina-Cervantes, Juan
    Alicia Hernandez-Gonzalez, Martha
    Eduardo Solorio-Meza, Sergio
    Manuel Lopez-Hernandez, Juan
    MATHEMATICS, 2021, 9 (19)
  • [25] Test and evaluation report for X-ray detection of threats using different X-ray functions
    Klock, BA
    39TH ANNUAL 2005 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY, PROCEEDINGS, 2005, : 182 - 184
  • [26] A complete simulation of x-ray angiography
    Hall, P
    MEDICAL IMAGING 1998: IMAGE PROCESSING, PTS 1 AND 2, 1998, 3338 : 1064 - 1075
  • [27] Rotational x-ray coronary angiography
    Raman, SV
    Morford, R
    Neff, M
    Attar, TT
    Kukielka, G
    Magorien, RD
    Bush, CA
    CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS, 2004, 63 (02) : 201 - 207
  • [28] On the ultimate x-ray detector for angiography
    Slump, CH
    Kauffman, JA
    Medical Imaging 2005: Physics of Medical Imaging, Pts 1 and 2, 2005, 5745 : 729 - 736
  • [29] EVALUATION OF CARDIAC MORPHOLOGY OF MITRAL-STENOSIS WITH X-RAY CT
    AOYAGI, Y
    TAKASU, J
    UDA, T
    YAMADA, Z
    MOROOKA, N
    YOSHIDA, H
    WATANABE, S
    MASUDA, Y
    INAGAKI, Y
    JAPANESE CIRCULATION JOURNAL-ENGLISH EDITION, 1985, 49 (08): : 795 - 796
  • [30] AN EVALUATION OF TUBERCULOSIS DETECTION BY CHEST X-RAY SURVEYS
    ANDERSON, RJ
    ENTERLINE, PE
    HILL, FJ
    ROBERTS, J
    PUBLIC HEALTH REPORTS, 1954, 69 (11) : 1053 - 1060