Segment-wise Evaluation in X-ray Angiography Stenosis Detection

被引:0
|
作者
Popp, Antonia [1 ,2 ,3 ,4 ,5 ,6 ]
El Al, Alaa Abd [1 ,3 ,4 ,5 ,6 ]
Hoffmann, Marie [1 ,3 ,4 ,5 ,6 ]
Laube, Ann [2 ,3 ,4 ,5 ,6 ,8 ]
McGranaghan, Peter [1 ,3 ,4 ,5 ,6 ,8 ,9 ,10 ]
Falk, Volkmar [1 ,3 ,4 ,5 ,6 ,8 ]
Hennemuth, Anja [2 ,3 ,4 ,5 ,6 ,7 ,8 ]
Meyer, Alexander [1 ,3 ,4 ,5 ,6 ]
机构
[1] DHZC Berlin, Dept Cardiothorac & Vasc Surg, Berlin, Germany
[2] DHZC Berlin, Inst Comp Assisted Cardiovasc Med, Berlin, Germany
[3] Charite Univ Med Berlin, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] Humboldt Univ, Berlin, Germany
[6] Berlin Inst Hlth, Berlin, Germany
[7] Fraunhofer Inst Digital Med MEVIS, Berlin, Germany
[8] DZHK German Ctr Cardiovasc Res, Partner Site Berlin, Berlin, Germany
[9] Baptist Hlth South Florida, Miami, FL USA
[10] Semmelweis Univ, Budapest, Hungary
关键词
D O I
10.1007/978-3-658-44037-4_36
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
X-ray coronary angiography is the gold standard imaging modality for the assessment of coronary artery disease (CAD). The SYNTAX score is a recommended instrument for therapy decision-making and predicts the postprocedural risk associated with the two revascularization strategies: percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG). The score requires expert assessment and manual measurements of coronary angiograms for stenosis characterization. In this work we propose a deep learning workflow for automated stenosis detection to facilitate the calculation of the SYNTAX score. We use a region-based convolutional neural network for object detection, fine-tuned on a public dataset consisting of angiography frames with annotated stenotic regions. The model is evaluated on angiographic video sequences of complex CAD patients from the German Heart Center of the Charite University Hospital (DHZC), Berlin. We provide a customized graphical tool for cardiac experts that allows correction and segment annotation of the detected stenotic regions. The model reached a precision of 78.39% in the frame-wise object detection task on the clinical dataset. For the task of predicting the presence of coronary stenoses at the patient level, the model achieved a sensitivity of 49.55% for stenoses of all degrees and 59.18% for stenoses of relevant degrees (>75%). The results suggest that our stenosis detection tool can facilitate visual assessment of CAD in angiography data and encourage to investigate further development towards fully automated calculation of the SYNTAX score.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 50 条
  • [1] Transfer Learning for Stenosis Detection in X-ray Coronary Angiography
    Ovalle-Magallanes, Emmanuel
    Avina-Cervantes, Juan Gabriel
    Cruz-Aceves, Ivan
    Ruiz-Pinales, Jose
    MATHEMATICS, 2020, 8 (09)
  • [2] Stenosis-DetNet: Sequence consistency-based stenosis detection for X-ray coronary angiography
    Pang, Kun
    Ai, Danni
    Fang, Huihui
    Fan, Jingfan
    Song, Hong
    Yang, Jian
    Computerized Medical Imaging and Graphics, 2021, 89
  • [3] Stenosis-DetNet: Sequence consistency-based stenosis detection for X-ray coronary angiography
    Pang, Kun
    Ai, Danni
    Fang, Huihui
    Fan, Jingfan
    Song, Hong
    Yang, Jian
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 89
  • [4] Automated Stenosis Detection and Classification in X-ray Angiography Using Deep Neural Network
    Cong, Chao
    Kato, Yoko
    Vasconcellos, Henrique Doria
    Lima, Joao
    Venkatesh, Bharath
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1301 - 1308
  • [5] Evaluation Metrics For Food Intake Activity Recognition Using Segment-wise IoU
    Wang, Chunzhuo
    Kumar, T. Sunil
    De Raedt, Walter
    Camps, Guido
    Hallez, Hans
    Vanrumste, Bart
    2024 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS, MEMEA 2024, 2024,
  • [6] Stenosis Detection in X-ray Coronary Angiography with Deep Neural Networks Leveraged by Attention Mechanisms
    Stralen, Pedro V.
    Rodrigues, Dinis L.
    Menezes, Miguel N.
    Pinto, Fausto J.
    Oliveira, Arlindo L.
    2022 9TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS RESEARCH AND APPLICATIONS, ICBRA 2022, 2022, : 123 - 128
  • [7] AUTOMATIC DETECTION OF CORONARY STENOSIS IN X-RAY ANGIOGRAPHY THROUGH SPATIO-TEMPORAL TRACKING
    Compas, Colin B.
    Syeda-Mahmood, Tanveer
    McNeillie, Patrick
    Beymer, David
    2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 1299 - 1302
  • [8] Hybrid classical-quantum Convolutional Neural Network for stenosis detection in X-ray coronary angiography
    Ovalle-Magallanes, Emmanuel
    Gabriel Avina-Cervantes, Juan
    Cruz-Aceves, Ivan
    Ruiz-Pinales, Jose
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 189
  • [9] Comparison of intraarterial MR angiography at 3.0 T with X-ray digital subtraction angiography for detection of renal artery stenosis in swine
    Rhee, Thomas K.
    Park, Jonathan K.
    Cashen, Ty A.
    Shin, Wanyong
    Schirf, Brian E.
    Gehl, James A.
    Larson, Andrew C.
    Carr, James C.
    Li, Debiao
    Carroll, Timothy J.
    Omary, Reed A.
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2006, 17 (07) : 1131 - 1137
  • [10] Evaluation of a new method for stenosis quantification from 3D X-ray angiography images
    Betting, F
    Moris, G
    Knoplioch, J
    Trousset, Y
    Sureda, F
    Launay, L
    MEDICAL IMAGING 2001: VISUALIZATION, DISPLAY, AND IMAGE-GUIDED PROCEDURES, 2001, 4319 : 194 - 202