Commensurators of thin normal subgroups and abelian quotients

被引:0
|
作者
Koberda, Thomas [1 ]
Mj, Mahan [2 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[2] Tata Inst Fundamental Res, Sch Math, Mumbai, India
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 04期
关键词
RIGIDITY; MANIFOLDS; FORMS;
D O I
10.2140/agt.2024.24.2149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an affirmative answer to many cases of a question due to Shalom, which asks if the commensurator of a thin subgroup of a Lie group is discrete. Let K < Gamma < G be an infinite normal subgroup of an arithmetic lattice Gamma in a rank-one simple Lie group G , such that the quotient Q = Gamma/ K is infinite. We show that the commensurator of K in G is discrete, provided that Q admits a surjective homomorphism to Z. In this case, we also show that the commensurator of K contains the normalizer of K with finite index. We thus vastly generalize a 2021 result of the authors, which showed that many natural normal subgroups of PSL2(Z) have discrete commensurator in PS2 (R) .
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Commensurators of abelian subgroups of biautomatic groups
    Motiejus Valiunas
    Geometriae Dedicata, 2023, 217
  • [2] Commensurators of abelian subgroups of biautomatic groups
    Valiunas, Motiejus
    GEOMETRIAE DEDICATA, 2023, 217 (02)
  • [3] Commensurators of abelian subgroups in CAT(0) groups
    Huang, Jingyin
    Prytula, Tomasz
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 79 - 98
  • [4] Commensurators of abelian subgroups in CAT(0) groups
    Jingyin Huang
    Tomasz Prytuła
    Mathematische Zeitschrift, 2020, 296 : 79 - 98
  • [5] COMMENSURATORS OF NORMAL SUBGROUPS OF LATTICES
    Fisher, David
    Mahan, M. J.
    VAN Limbeek, Wouter
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2024, 11
  • [6] Commensurators of abelian subgroups and the virtually abelian dimension of mapping class groups
    Rolland, Rita Jimenez
    Alvarez, Porfirio L. Leon
    Saldana, Luis Jorge Sanchez
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (06)
  • [7] ALMOST ABELIAN LIE GROUPS, SUBGROUPS AND QUOTIENTS
    Rios M.A.
    Avetisyan Z.
    Berlow K.
    Martin I.
    Rakholia G.
    Yang K.
    Zhang H.
    Zhao Z.
    Journal of Mathematical Sciences, 2022, 266 (1) : 42 - 65
  • [8] ABELIAN QUOTIENTS OF SUBGROUPS OF THE MAPPING CLASS GROUP OF SURFACES
    MORITA, S
    DUKE MATHEMATICAL JOURNAL, 1993, 70 (03) : 699 - 726
  • [9] Quotients by countable normal subgroups are hyperfinite
    Frisch, Joshua
    Shinko, Forte
    GROUPS GEOMETRY AND DYNAMICS, 2023, 17 (03) : 985 - 992
  • [10] Large abelian normal subgroups
    S. Aivazidis
    I. M. Isaacs
    Archiv der Mathematik, 2018, 111 : 113 - 122