Commensurators of thin normal subgroups and abelian quotients

被引:0
|
作者
Koberda, Thomas [1 ]
Mj, Mahan [2 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[2] Tata Inst Fundamental Res, Sch Math, Mumbai, India
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 04期
关键词
RIGIDITY; MANIFOLDS; FORMS;
D O I
10.2140/agt.2024.24.2149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an affirmative answer to many cases of a question due to Shalom, which asks if the commensurator of a thin subgroup of a Lie group is discrete. Let K < Gamma < G be an infinite normal subgroup of an arithmetic lattice Gamma in a rank-one simple Lie group G , such that the quotient Q = Gamma/ K is infinite. We show that the commensurator of K in G is discrete, provided that Q admits a surjective homomorphism to Z. In this case, we also show that the commensurator of K contains the normalizer of K with finite index. We thus vastly generalize a 2021 result of the authors, which showed that many natural normal subgroups of PSL2(Z) have discrete commensurator in PS2 (R) .
引用
收藏
页数:25
相关论文
共 50 条
  • [21] A pronormality criterion for supplements to abelian normal subgroups
    Kondrat'ev, A. S.
    Maslova, N., V
    Revin, D. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (01): : 153 - 158
  • [22] A Pronormality Criterion for Supplements to Abelian Normal Subgroups
    Kondrat'ev, A. S.
    Maslova, N. V.
    Revin, D. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) : S145 - S150
  • [23] CENTRALIZERS OF ABELIAN, NORMAL SUBGROUPS OF HYPERCYCLIC GROUPS
    SCHOENWA.U
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (01) : 197 - +
  • [24] Free subgroups with torsion quotients and profinite subgroups with torus quotients
    Lewis, Wayne
    Loth, Peter
    Mader, Adolf
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2020, 144 : 177 - 195
  • [25] ABELIAN NORMAL-SUBGROUPS OF M-GROUPS
    ISAACS, IM
    MATHEMATISCHE ZEITSCHRIFT, 1983, 182 (02) : 205 - 221
  • [26] G-Groups and Biuniform Abelian Normal Subgroups
    Arroyo Paniagua, Maria Jose
    Facchini, Alberto
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2016, 2 : 79 - 111
  • [27] On the existence of complements in a group to some abelian normal subgroups
    Dixon, Martyn R.
    Kurdachenko, Leonid A.
    Otal, Javier
    ALGEBRA & DISCRETE MATHEMATICS, 2010, 10 (01): : 18 - 41
  • [28] QUOTIENTS OF ABELIAN SURFACES
    YOSHIHARA, H
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (01) : 135 - 143
  • [29] ON THE EXISTENCE OF FINITELY GENERATED NORMAL-SUBGROUPS WITH INFINITE CYCLIC QUOTIENTS
    BIERI, R
    STREBEL, R
    ARCHIV DER MATHEMATIK, 1981, 36 (05) : 401 - 403
  • [30] Normal subgroups of holomorphs of Abelian groups and almost holomorphic isomorphism
    Grinshpon I.E.
    Journal of Mathematical Sciences, 2008, 154 (3) : 284 - 289