Commensurators of abelian subgroups and the virtually abelian dimension of mapping class groups

被引:0
|
作者
Rolland, Rita Jimenez [1 ]
Alvarez, Porfirio L. Leon [1 ]
Saldana, Luis Jorge Sanchez [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Oaxaca 68000, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Coyoacan, Mexico
关键词
Mapping class group; Classifying spaces; Families of subgroups; Normalizers of abelian subgroups; Commensurators of abelian; subgroups; Virtually abelian dimension; CLASSIFYING-SPACES; CYCLIC SUBGROUPS; FAMILY;
D O I
10.1016/j.jpaa.2023.107566
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Mod(S) be the mapping class group of a compact connected orientable surface S, possibly with punctures and boundary components, with negative Euler characteristic. We prove that for any infinite virtually abelian subgroup H of Mod(S), there is a subgroup H' commensurable with H such that the commensurator of H equals the normalizer of H As a consequence we give, for each n >= 2, an upper bound for the geometric dimension of Mod(S) for the family of abelian subgroups of rank bounded by n. These results generalize work by JuanPineda-Trujillo-Negrete and Nucinkis-Petrosyan for the virtually cyclic case.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Commensurators of abelian subgroups of biautomatic groups
    Motiejus Valiunas
    [J]. Geometriae Dedicata, 2023, 217
  • [2] Commensurators of abelian subgroups of biautomatic groups
    Valiunas, Motiejus
    [J]. GEOMETRIAE DEDICATA, 2023, 217 (02)
  • [3] Commensurators of abelian subgroups in CAT(0) groups
    Huang, Jingyin
    Prytula, Tomasz
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 79 - 98
  • [4] Commensurators of abelian subgroups in CAT(0) groups
    Jingyin Huang
    Tomasz Prytuła
    [J]. Mathematische Zeitschrift, 2020, 296 : 79 - 98
  • [5] Commensurators of thin normal subgroups and abelian quotients
    Koberda, Thomas
    Mj, Mahan
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (04):
  • [6] Virtually Abelian Subgroups of IAn (Z/3) Are Abelian
    Handel, Michael
    Mosher, Lee
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2020, 69 (03) : 465 - 485
  • [7] ABELIAN SUBGROUPS OF THE MAPPING CLASS GROUPS FOR NON-ORIENTABLE SURFACES
    Kuno, Erika
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2019, 56 (01) : 91 - 100
  • [8] ABELIAN AND SOLVABLE SUBGROUPS OF THE MAPPING CLASS GROUP
    BIRMAN, JS
    LUBOTZKY, A
    MCCARTHY, J
    [J]. DUKE MATHEMATICAL JOURNAL, 1983, 50 (04) : 1107 - 1120
  • [9] Finite abelian subgroups of the mapping class group
    Broughton, S. Allen
    Wootton, Aaron
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 1651 - 1697
  • [10] The Martin boundary of relatively hyperbolic groups with virtually abelian parabolic subgroups
    Dussaule, Matthieu
    Gekhtman, Ilya
    Gerasimov, Victor
    Potyagailo, Leonid
    [J]. ENSEIGNEMENT MATHEMATIQUE, 2020, 66 (03): : 341 - 382