We study the structure of the commensurator of a virtually abelian subgroup H in G, where G acts properly on a CAT(0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {CAT}(0)$$\end{document} space X. When X is a Hadamard manifold and H is semisimple, we show that the commensurator of H coincides with the normalizer of a finite index subgroup of H. When X is a CAT(0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {CAT}(0)$$\end{document} cube complex or a thick Euclidean building and the action of G is cellular, we show that the commensurator of H is an ascending union of normalizers of finite index subgroups of H. We explore several special cases where the results can be strengthened and we discuss a few examples showing the necessity of various assumptions. Finally, we present some applications to the constructions of classifying spaces with virtually abelian stabilizers.
机构:
Ohio State Univ, Dept Math, 100 Math Tower,231 W 18th Ave, Columbus, OH 43210 USAOhio State Univ, Dept Math, 100 Math Tower,231 W 18th Ave, Columbus, OH 43210 USA
Huang, Jingyin
Prytula, Tomasz
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Denmark, Dept Appl Math & Comp Sci, Anker Engelunds Vej 1, DK-2800 Lyngby, DenmarkOhio State Univ, Dept Math, 100 Math Tower,231 W 18th Ave, Columbus, OH 43210 USA