Cross-Subject EEG-Based Emotion Recognition Using Deep Metric Learning and Adversarial Training

被引:0
|
作者
Alameer, Hawraa Razzaq Abed [1 ]
Salehpour, Pedram [1 ]
Hadi Aghdasi, Seyyed [1 ]
Feizi-Derakhshi, Mohammad-Reza [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Dept Comp Engn, Tabriz 51666, Iran
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Electroencephalography; Emotion recognition; Brain modeling; Training; Accuracy; Feature extraction; Data models; Deep learning; Adversarial machine learning; EEG signals; cross-subject emotion recognition; deep metric learning; adversarial learning;
D O I
10.1109/ACCESS.2024.3458833
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, due to individual differences and the non-stationarity properties of EEG signals, developing an accurate cross-subject EEG emotion recognition method is in demand. Despite many successful attempts, the accuracy of generalized models across subjects is inferior compared to those limited to a specific individual. Moreover, most cross-subject training methods assume that the unlabeled data from target subjects is available. However, this assumption does not hold in practice. To address these issues, this paper presents a novel deep similarity learning loss specific to the emotion recognition task. This loss function minimizes intra-emotion class variations of EEG segments with different subject labels while maximizing inter-emotion class variations. Another key aspect of the proposed semantic embedding loss is that it preserves the order of emotion classes in the learned embedding. Specifically, it ensures that the embedding space maintains the semantic order of emotions. Also, we integrate the deep similarity learning module with adversarial learning, which helps to learn a subject-invariant representation of EEG signals in an end-to-end training paradigm. We conduct several experiments on three widely used datasets: SEED, SEED-GER, and DEAP. The results confirm that the proposed method effectively learns a subject invariant representation from EEG signals and consistently outperforms the state-of-the-art (SOTA) peer methods.
引用
收藏
页码:130241 / 130252
页数:12
相关论文
共 50 条
  • [1] Cross-Subject EEG-Based Emotion Recognition with Deep Domain Confusion
    Zhang, Weiwei
    Wang, Fei
    Jiang, Yang
    Xu, Zongfeng
    Wu, Shichao
    Zhang, Yahui
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 : 558 - 570
  • [2] Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition
    Zhang, Hanzhong
    Zuo, Tienyu
    Chen, Zhiyang
    Wang, Xin
    Sun, Poly Z. H.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 3872 - 3881
  • [3] Cross-subject EEG-based Emotion Recognition Using Adversarial Domain Adaption with Attention Mechanism
    Ye, Yalan
    Zhu, Xin
    Li, Yunxia
    Pan, Tongjie
    He, Wenwen
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1140 - 1144
  • [4] Adversarial Discriminative Domain Adaptation and Transformers for EEG-based Cross-Subject Emotion Recognition
    Sartipi, Shadi
    Cetin, Mujdat
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [5] Generalized Contrastive Partial Label Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Fan, Lingmin
    Shao, Shitong
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [6] Spatial-Temporal Constraint Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Hou, Bowen
    Shao, Shitong
    Huan, Wei
    Tian, Ye
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [7] EEG-based cross-subject emotion recognition using multi-source domain transfer learning
    Quan, Jie
    Li, Ying
    Wang, Lingyue
    He, Renjie
    Yang, Shuo
    Guo, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [8] Subject-Independent EEG-based Emotion Recognition using Adversarial Learning
    Hwang, Sunhee
    Ki, Minsong
    Hong, Kibeom
    Byun, Hyeran
    2020 8TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2020, : 99 - 102
  • [9] Cross-Subject Channel Selection Using Modified Relief and Simplified CNN-Based Deep Learning for EEG-Based Emotion Recognition
    Farokhah, Lia
    Sarno, Riyanarto
    Fatichah, Chastine
    IEEE ACCESS, 2023, 11 : 110136 - 110150
  • [10] Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition
    Jimenez-Guarneros, Magdiel
    Fuentes-Pineda, Gibran
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86