Cross-Subject EEG-Based Emotion Recognition Using Deep Metric Learning and Adversarial Training

被引:0
|
作者
Alameer, Hawraa Razzaq Abed [1 ]
Salehpour, Pedram [1 ]
Hadi Aghdasi, Seyyed [1 ]
Feizi-Derakhshi, Mohammad-Reza [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Dept Comp Engn, Tabriz 51666, Iran
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Electroencephalography; Emotion recognition; Brain modeling; Training; Accuracy; Feature extraction; Data models; Deep learning; Adversarial machine learning; EEG signals; cross-subject emotion recognition; deep metric learning; adversarial learning;
D O I
10.1109/ACCESS.2024.3458833
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, due to individual differences and the non-stationarity properties of EEG signals, developing an accurate cross-subject EEG emotion recognition method is in demand. Despite many successful attempts, the accuracy of generalized models across subjects is inferior compared to those limited to a specific individual. Moreover, most cross-subject training methods assume that the unlabeled data from target subjects is available. However, this assumption does not hold in practice. To address these issues, this paper presents a novel deep similarity learning loss specific to the emotion recognition task. This loss function minimizes intra-emotion class variations of EEG segments with different subject labels while maximizing inter-emotion class variations. Another key aspect of the proposed semantic embedding loss is that it preserves the order of emotion classes in the learned embedding. Specifically, it ensures that the embedding space maintains the semantic order of emotions. Also, we integrate the deep similarity learning module with adversarial learning, which helps to learn a subject-invariant representation of EEG signals in an end-to-end training paradigm. We conduct several experiments on three widely used datasets: SEED, SEED-GER, and DEAP. The results confirm that the proposed method effectively learns a subject invariant representation from EEG signals and consistently outperforms the state-of-the-art (SOTA) peer methods.
引用
收藏
页码:130241 / 130252
页数:12
相关论文
共 50 条
  • [41] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [42] An Investigation of Deep Learning Models for EEG-Based Emotion Recognition
    Zhang, Yaqing
    Chen, Jinling
    Tan, Jen Hong
    Chen, Yuxuan
    Chen, Yunyi
    Li, Dihan
    Yang, Lei
    Su, Jian
    Huang, Xin
    Che, Wenliang
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [43] A deep subdomain associate adaptation network for cross-session and cross-subject EEG emotion recognition
    Meng, Ming
    Hu, Jiahao
    Gao, Yunyuan
    Kong, Wanzeng
    Luo, Zhizeng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [44] EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network
    Cui, Jian
    Lan, Zirui
    Sourina, Olga
    Muller-Wittig, Wolfgang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7921 - 7933
  • [45] Cross-subject EEG emotion classification based on few-label adversarial domain adaption
    Wang, Yingdong
    Liu, Jiatong
    Ruan, Qunsheng
    Wang, Shuocheng
    Wang, Chen
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [46] Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition
    Peng, Yong
    Liu, Honggang
    Kong, Wanzeng
    Nie, Feiping
    Lu, Bao-Liang
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (07) : 8104 - 8115
  • [47] Cross-Subject EEG Signal Recognition Using Deep Domain Adaptation Network
    Hang, Wenlong
    Feng, Wei
    Du, Ruoyu
    Liang, Shuang
    Chen, Yan
    Wang, Qiong
    Liu, Xuejun
    IEEE ACCESS, 2019, 7 : 128273 - 128282
  • [48] EEG Feature Selection for Emotion Recognition Based on Cross-subject Recursive Feature Elimination
    Zhang, Wei
    Yin, Zhong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6256 - 6261
  • [49] An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction
    Zeng, Hong
    Li, Xiufeng
    Borghini, Gianluca
    Zhao, Yue
    Arico, Pietro
    Di Flumeri, Gianluca
    Sciaraffa, Nicolina
    Zakaria, Wael
    Kong, Wanzeng
    Babiloni, Fabio
    SENSORS, 2021, 21 (07)
  • [50] Improving Cross-Subject Activity Recognition via Adversarial Learning
    Leite, Clayton Frederick Souza
    Xiao, Yu
    IEEE ACCESS, 2020, 8 : 90542 - 90554