Cross-Subject EEG-Based Emotion Recognition Using Deep Metric Learning and Adversarial Training

被引:0
|
作者
Alameer, Hawraa Razzaq Abed [1 ]
Salehpour, Pedram [1 ]
Hadi Aghdasi, Seyyed [1 ]
Feizi-Derakhshi, Mohammad-Reza [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Dept Comp Engn, Tabriz 51666, Iran
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Electroencephalography; Emotion recognition; Brain modeling; Training; Accuracy; Feature extraction; Data models; Deep learning; Adversarial machine learning; EEG signals; cross-subject emotion recognition; deep metric learning; adversarial learning;
D O I
10.1109/ACCESS.2024.3458833
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, due to individual differences and the non-stationarity properties of EEG signals, developing an accurate cross-subject EEG emotion recognition method is in demand. Despite many successful attempts, the accuracy of generalized models across subjects is inferior compared to those limited to a specific individual. Moreover, most cross-subject training methods assume that the unlabeled data from target subjects is available. However, this assumption does not hold in practice. To address these issues, this paper presents a novel deep similarity learning loss specific to the emotion recognition task. This loss function minimizes intra-emotion class variations of EEG segments with different subject labels while maximizing inter-emotion class variations. Another key aspect of the proposed semantic embedding loss is that it preserves the order of emotion classes in the learned embedding. Specifically, it ensures that the embedding space maintains the semantic order of emotions. Also, we integrate the deep similarity learning module with adversarial learning, which helps to learn a subject-invariant representation of EEG signals in an end-to-end training paradigm. We conduct several experiments on three widely used datasets: SEED, SEED-GER, and DEAP. The results confirm that the proposed method effectively learns a subject invariant representation from EEG signals and consistently outperforms the state-of-the-art (SOTA) peer methods.
引用
收藏
页码:130241 / 130252
页数:12
相关论文
共 50 条
  • [21] Hybrid transfer learning strategy for cross-subject EEG emotion recognition
    Lu, Wei
    Liu, Haiyan
    Ma, Hua
    Tan, Tien-Ping
    Xia, Lingnan
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [22] EEG-Based Human Emotion Recognition Using Deep Learning
    1600, Institute of Electrical and Electronics Engineers Inc.
  • [23] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer Learning
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [24] Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition
    Shen, Xinke
    Liu, Xianggen
    Hu, Xin
    Zhang, Dan
    Song, Sen
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2496 - 2511
  • [25] Exploring EEG Features in Cross-Subject Emotion Recognition
    Li, Xiang
    Song, Dawei
    Zhang, Peng
    Zhang, Yazhou
    Hou, Yuexian
    Hu, Bin
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [26] Cross-Subject Emotion Recognition Using Deep Adaptation Networks
    Li, He
    Jin, Yi-Ming
    Zheng, Wei-Long
    Lu, Bao-Liang
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT V, 2018, 11305 : 403 - 413
  • [27] Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
    Zuo, Xin
    Zhang, Chi
    Hamalainen, Timo
    Gao, Hanbing
    Fu, Yu
    Cong, Fengyu
    ENTROPY, 2022, 24 (09)
  • [28] Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition
    Li, Wenjie
    Li, Haoyu
    Sun, Xinlin
    Kang, Huicong
    An, Shan
    Wang, Guoxin
    Gao, Zhongke
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (02)
  • [29] Deep Learning for EEG-based Emotion Recognition: A Survey
    Li J.-Y.
    Du X.-B.
    Zhu Z.-L.
    Deng X.-M.
    Ma C.-X.
    Wang H.-A.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (01): : 255 - 276
  • [30] Enhancing cross-subject EEG emotion recognition through multi-source manifold metric transfer learning
    Shi X.
    She Q.
    Fang F.
    Meng M.
    Tan T.
    Zhang Y.
    Computers in Biology and Medicine, 2024, 174