Cross-Subject Channel Selection Using Modified Relief and Simplified CNN-Based Deep Learning for EEG-Based Emotion Recognition

被引:3
|
作者
Farokhah, Lia [1 ,2 ]
Sarno, Riyanarto [1 ]
Fatichah, Chastine [1 ]
机构
[1] Inst Teknol Sepuluh Nopember ITS, Fac Intelligent Elect & Informat Technol, Dept Informat, Surabaya, Indonesia
[2] Inst Teknol Bisnis ASIA Malang, Fac Technol & Design, Dept Informat, Malang 65142, Indonesia
关键词
Electroencephalography; Emotion recognition; Deep learning; Brain modeling; Collaboration; Computer architecture; Support vector machines; Convolutional neural networks; Channel selection; emotion recognition; validation; cross-subject; scalogram; CLASSIFICATION;
D O I
10.1109/ACCESS.2023.3322294
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emotion recognition based on EEG has been implemented in numerous studies. In most of them, there are two observations made: first, extensive implementation is negatively associated with the performed validation. Cross-subject validation is more difficult than subject-dependent validation due to the high variability between EEG recordings caused by domain shifts. Second, a large number of channels requires extensive computation. Efforts to reduce channels are impeded by decreased performance as the number of channels is decreased; therefore, an effective approach for reducing channels is required to maintain performance. In this paper, we propose collaboration on 2D EEG input in the form of scalograms, CNN, and channel selection based on power spectral density ratios coupled with the relief method. The power ratio is derived from the power band's power spectral density. Based on the trial selection with various conditions, the collaboration of the proposed scalogram and PR-Relief (power ratio-Relief) produced a stable classification rate. For analysis, the Database for Emotion Analysis of Physiological Signals (DEAP) has been employed. Experimental results indicate that the proposed method increases the accuracy of cross-subject emotion recognition using 10 channels by 2.71% for valence and 1.96% for arousal, respectively. Using 10 channels for subject-dependent validation, the efficacy of the valence and arousal classes increased by 2.41% and 1.2%, respectively. Consequently, by pursuing collaboration between input interpretation and stable channel selection methods, the proposed collaborative method achieves a better result.
引用
收藏
页码:110136 / 110150
页数:15
相关论文
共 50 条
  • [1] Cross-Subject EEG-Based Emotion Recognition Using Deep Metric Learning and Adversarial Training
    Alameer, Hawraa Razzaq Abed
    Salehpour, Pedram
    Hadi Aghdasi, Seyyed
    Feizi-Derakhshi, Mohammad-Reza
    IEEE ACCESS, 2024, 12 : 130241 - 130252
  • [2] Cross-Subject EEG-Based Emotion Recognition with Deep Domain Confusion
    Zhang, Weiwei
    Wang, Fei
    Jiang, Yang
    Xu, Zongfeng
    Wu, Shichao
    Zhang, Yahui
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 : 558 - 570
  • [3] Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition
    Zhang, Hanzhong
    Zuo, Tienyu
    Chen, Zhiyang
    Wang, Xin
    Sun, Poly Z. H.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 3872 - 3881
  • [4] Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features†
    Jin, Longbin
    Kim, Eun Yi
    SENSORS, 2020, 20 (23) : 1 - 18
  • [5] Generalized Contrastive Partial Label Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Fan, Lingmin
    Shao, Shitong
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [6] Spatial-Temporal Constraint Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Hou, Bowen
    Shao, Shitong
    Huan, Wei
    Tian, Ye
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [7] EEG-based cross-subject emotion recognition using multi-source domain transfer learning
    Quan, Jie
    Li, Ying
    Wang, Lingyue
    He, Renjie
    Yang, Shuo
    Guo, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [8] Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition
    Jimenez-Guarneros, Magdiel
    Fuentes-Pineda, Gibran
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [9] EEG-based Cross-subject Mental Fatigue Recognition
    Liu, Yisi
    Lan, Zirui
    Cui, Jian
    Sourina, Olga
    Muller-Wittig, Wolfgang
    2019 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2019, : 247 - 252
  • [10] Cross-subject EEG-based Emotion Recognition Using Adversarial Domain Adaption with Attention Mechanism
    Ye, Yalan
    Zhu, Xin
    Li, Yunxia
    Pan, Tongjie
    He, Wenwen
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1140 - 1144